The Dihedral Group

The group $D_n = \text{Sym}(\{1, 2, \dots, n\}, s)$, where $n \ge 3$ and

$$s = \{\{1, 2\}, \dots, \{i, i+1\}, \dots, \{1, n\}, \{n, 1\}\},\$$

is called the dihedral group of degree n. This group contains the subgroup $C_n = \langle \sigma \rangle$, where $\sigma = (12 \cdots n)$. Since C_n is its own centralizer in S_n , any element τ of D_n which is not in C_n does not commute with σ . But then, if $\tau(1) = i$, we must have $\tau(2) = \sigma^{-1}(i)$; otherwise, $\tau(2) = \sigma(i)$ which implies inductively that $\tau(j) = \sigma^{j-1}(i)$ and hence that $\tau(j) = \sigma^{i-1}(j)$, i.e., that $\tau = \sigma^{i-1}$. It follows inductively that $\tau(j) = \sigma^{-j+1}(i) = \sigma^{i-j}(1)$. Thus $\tau(j) = i - j$ for $1 \leq j \leq i$ and $\tau(j) = n - j + i + 1$ for $i + 1 \leq j \leq n$ which imply that $\tau^2 = 1$. Moreover, any function τ defined in this way is in D_n . It follows that $|D_n| = 2n$ and hence that C_n is a normal subgroup of D_n . Thus D_n is generated by σ and any element τ not in C_n . Moreover, $\tau \sigma \tau^{-1} = \sigma^{-1}$. Hence $D_n \cong C_n \rtimes_{\rho} C_2$, where

$$\rho: C_2 \to \operatorname{Aut}(C_n)$$

is the homomorphism defined by $\rho(\tau)(\sigma) = \sigma^{-1}$. It follows that D_n has the presentation

$$D_n = <\sigma, \tau \mid \sigma^n = 1, \tau^2 = 1, \tau \sigma \tau^{-1} = \sigma^{-1} >$$

since any group having these generators and relations is of order at most 2n. Indeed, the elements in such a group are of the form $\sigma^i \tau^j$ with $0 \le i < n, 0 \le j < 2$. The group D_n is also isomorphic to the group of symmetries of a regular *n*-gon.

If $a, b \in D_n$ with o(a) = n, o(b) = 2 and $b \notin \langle a \rangle$, we have

$$D_n = \langle a, b \mid a^n = 1, b^2 = 1, bab^{-1} = a^{-1} \rangle$$

and so there is an automorphism ψ such that $\psi(\sigma) = a, \psi(\tau) = b$ and any automorphism of D_n is of this form. Thus $|\operatorname{Aut}(D_n)| = n\phi(n)$, where $\phi(n) = |(\mathbb{Z}/n\mathbb{Z})^*|$.

Problem 1. Show that $Aut(D_n) = C_n \rtimes_{\rho} Aut(C_n)$, where $\rho : Aut(C_n) \to Aut(C_n)$ is the identity map.

Hints. Let $A = \{\tau, \sigma\tau, \sigma^2\tau, \ldots, \sigma^{n-1}\tau\}$ be the elements of order 2 not in $\langle \sigma \rangle$. Then, since A generates D_n , we obtain an injective homomorphism of $\operatorname{Aut}(D_n)$ into S_A by restricting $\psi \in \operatorname{Aut}(D_n)$ to A. Show that the automorphism of D_n sending σ to σ and τ to $\sigma\tau$ yields an *n*-cycle λ and that, for any automorphism ψ of $\operatorname{Aut}(C_n)$, the automorphism of D_n sending σ to $\psi(\sigma) = \sigma^k$ and τ to τ yields a permutation γ such that $\gamma\lambda\gamma^{-1} = \lambda^k$.

Problem 2. Show that, for n odd, the elements of D_n not in C_n are all conjugate and that, for n even, the complement of C_n in D_n is the union of two conjugacy classes.