
Cyclic Groups

Definition 1 (Cyclic Group). A group is called cyclic if it can be generated by a single element.

Example 1 (Cn). The group Cn = Sym({1, 2, . . . , n}, s), where

s = {(1, 2), . . . , (i, i + 1), . . . , (1, n), (n, 1)}

is the permutation group on {1, 2, . . . , n} generated by s. Indeed, for any 1 ≤ k ≤ n, there is a unique
symmetry which takes 1 to k, namely the permutation which takes i to i+ k− 1 if i+ k− 1 ≤ n and
to i + k + n− 1 if i + k− 1 > n. But this permutation is sk−1. Since f is a symmetry iff fsf−1 = s,
this also shows that the centralizer of s is Cn. Since Cn = {1 = s0, s, s2, . . . , sn−1}, the order of Cn

is n. The permutation s permutes 1, 2, . . . , n cyclically and is called an n-cycle.

Example 2 (C∞). The integers Z under ordinary addition are a cyclic group, being generated by
1 or −1. Via the regular representation, it is isomorphic to the permutation group C∞ generated
by s = {(i, i + 1)|i ∈ Z}. Moreover, as in the previous example, C∞ = Sym(Z, s).

If (G, ·) is a group and a is any element of G, the mapping φ : Z→ G defined by φ(n) = an is a
homomorphism of the additive group of integers into G. Since the image of φ is < a >, the mapping
φ is surjective iff G =< a >. Assume that G =< a >. Now there are two possibilities:

(a) φ is injective: This case arises iff ak = am =⇒ k = m or, equivalently, an = 1 =⇒ n = 0. In
this case, φ : (Z,+) ∼→ (G, ·).

(b) φ is not injective: In this case, there is a integer k 6= 0 such that ak = 0. The set of all such k,
namely φ−1(1), is a subgroup of Z. In n is the smallest such k > 0, then ak = 1 =⇒ n|k in
virtue of the following Lemma.

Lemma 1. Every subgroup of (Z,+) is cyclic. More, precisely, if I is a non-zero subgroup of (Z, +),
then I is generated by the smallest integer n in I, i.e, I = nZ = {kn|k ∈ Z}.
Proof. Suppose that I 6= 0 and let n be the smallest positive integer in I. If m ∈ I we have, by the
division algorithm, m = kn + r with 0 ≤ r < n. But then, r = m− kn ∈ I which implies r = 0.

We therefore have ak = am ⇐⇒ n|k − m. In particular, |G| = n and φ−1(ak) = k + nZ =
{k+mn|m ∈ Z}. If we let Z/nZ denote the collection of sets of the form k+nZ, i.e., the integers mod
n, the mapping φ′ : Z/nZ → G defined by φ′(k + nZ) = ak is bijective. Morover, there is a unique
group structure on Z/nZ such that φ′ is an isomorphism, namely (k+nZ)+(m+nZ) = (k+m)+nZ.
This is the additive group of integers mod n. Applying, this to G = Cn, we get an isomorphism of
(Z/nZ, +) with Cn.

We thus obtain the following result:

Theorem 2. Every infinite cyclic group is isomorphic to C∞ and every finite group of order n is
isomorphic to Cn.

Definition 2 (Order of an Element in a Group). The order of an element a in a group is the
order of the cyclic group it generates. It is denoted by o(a).

Thus o(a) = ∞ iff an = 1 =⇒ n = 0 or, in additive notation, na = 0 =⇒ n = 0. We have
o(a) = n < ∞ iff an = 1 and ak 6= 1 if 1 ≤ k < n or, in additive notation, na = 0 and ka 6= 0 if
1 ≤ k < n.
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We now look at the set of subgroups of a cyclic group. The set of subgroups of any group G are
partially orderd by inclusion. Moreover, with respect to this partial order, every pair of subgroups
H, K of G have a greatest lower bound (glb), namely H ∩K, and a least upper bound (lub), namely
< H ∪ K >. Such a partially ordered set is called a lattice (see text: Chapter 8). We denote
the lattice of subgroups of G by L(G). If we replace ⊆ by ⊇ we get a lattice Lopp(G) in which
glb(H,K) =< H ∪K > and lub(H, K) = H ∩K.

The natural numbers are partially ordered by the divisbility relation | where k|m means ∃n ∈ N
with m = nk. The greatest lower bound of two natural numbers m,n is their greatest common
divisor gcd(m, n) and their least upper bound is their least common multiple lcm(m,n). Note that
gcd(0, 0) does not exist if greatest is with respect the usual ordering of N. Since n|m ⇐⇒ nZ ⊇ mZ,
we see that the mapping n 7→ nZ is an isomorphism of the lattice (N, |) with the lattice Lopp(Z, +).
In particular, we have d = gcd(m,n) ⇐⇒ dZ = mZ+ nZ and ` = lcm(m, n) ⇐⇒ `Z = mZ ∩ nZ.

Theorem 3. Let (G, ·) be a finite cyclic group of order n generated by a and let φ : Z → G be the
homomorphism defined by φ(k) = ak. Then, the mapping H 7→ φ−1(H) is an isomorphism of the
lattice of subgroups of G with the lattice of subgroups of (Z, +) which contain nZ.

Proof. Since φ(φ−1(H)) = H it sufices to prove that I = φ−1(φ(I) for every subgroup of Z which
contains nZ. For such a subgroup we have I = dZ with d|n and φ(I) =< ad >. Hence φ−1(φ(I) =
d + nZ = dZ = I.

Corollary 4. If (G, ·) is a cyclic group of order n and generated by a, the the mapping d 7→< ad >
is an isomorphism of the lattice of divisors of n with the lattice Lopp(G). In H is a subgroup of G
and d is the smallest positive integer with ad ∈ H then H =< ad >.

Corollary 5. If G is a finite cyclic group and d|n there is a unique subgroup H of G of order d. If
G =< a > then H =< an/d >.

This follows from the fact that d is the order of an/d.
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