Cyclic Groups

Definition 1 (Cyclic Group). A group is called cyclic if it can be generated by a single element.

Example 1 (C_n) . The group $C_n = \text{Sym}(\{1, 2, ..., n\}, s)$, where

$$s = \{(1, 2), \dots, (i, i + 1), \dots, (1, n), (n, 1)\}$$

is the permutation group on $\{1, 2, ..., n\}$ generated by s. Indeed, for any $1 \le k \le n$, there is a unique symmetry which takes 1 to k, namely the permutation which takes i to i+k-1 if $i+k-1 \le n$ and to i+k+n-1 if i+k-1 > n. But this permutation is s^{k-1} . Since f is a symmetry iff $fsf^{-1} = s$, this also shows that the centralizer of s is C_n . Since $C_n = \{1 = s^0, s, s^2, ..., s^{n-1}\}$, the order of C_n is n. The permutation s permutes 1, 2, ..., n cyclically and is called an n-cycle.

Example 2 (C_{∞}) . The integers \mathbb{Z} under ordinary addition are a cyclic group, being generated by 1 or -1. Via the regular representation, it is isomorphic to the permutation group C_{∞} generated by $s = \{(i, i+1) | i \in \mathbb{Z}\}$. Moreover, as in the previous example, $C_{\infty} = \operatorname{Sym}(\mathbb{Z}, s)$.

If (G, \cdot) is a group and a is any element of G, the mapping $\phi : \mathbb{Z} \to G$ defined by $\phi(n) = a^n$ is a homomorphism of the additive group of integers into G. Since the image of ϕ is < a >, the mapping ϕ is surjective iff G = < a >. Assume that G = < a >. Now there are two possibilities:

- (a) ϕ is injective: This case arises iff $a^k = a^m \implies k = m$ or, equivalently, $a^n = 1 \implies n = 0$. In this case, $\phi: (\mathbb{Z}, +) \stackrel{\sim}{\to} (G, \cdot)$.
- (b) ϕ is not injective: In this case, there is a integer $k \neq 0$ such that $a^k = 0$. The set of all such k, namely $\phi^{-1}(1)$, is a subgroup of \mathbb{Z} . In n is the smallest such k > 0, then $a^k = 1 \implies n|k$ in virtue of the following Lemma.

Lemma 1. Every subgroup of $(\mathbb{Z}, +)$ is cyclic. More, precisely, if I is a non-zero subgroup of $(\mathbb{Z}, +)$, then I is generated by the smallest integer n in I, i.e, $I = n\mathbb{Z} = \{kn | k \in \mathbb{Z}\}$.

Proof. Suppose that $I \neq 0$ and let n be the smallest positive integer in I. If $m \in I$ we have, by the division algorithm, m = kn + r with $0 \leq r < n$. But then, $r = m - kn \in I$ which implies r = 0. \square

We therefore have $a^k = a^m \iff n|k-m$. In particular, |G| = n and $\phi^{-1}(a^k) = k + n\mathbb{Z} = \{k+mn|m\in\mathbb{Z}\}$. If we let $\mathbb{Z}/n\mathbb{Z}$ denote the collection of sets of the form $k+n\mathbb{Z}$, i.e., the integers mod n, the mapping $\phi': \mathbb{Z}/n\mathbb{Z} \to G$ defined by $\phi'(k+n\mathbb{Z}) = a^k$ is bijective. Morover, there is a unique group structure on $\mathbb{Z}/n\mathbb{Z}$ such that ϕ' is an isomorphism, namely $(k+n\mathbb{Z})+(m+n\mathbb{Z})=(k+m)+n\mathbb{Z}$. This is the additive group of integers mod n. Applying, this to $G=C_n$, we get an isomorphism of $(\mathbb{Z}/n\mathbb{Z},+)$ with C_n .

We thus obtain the following result:

Theorem 2. Every infinite cyclic group is isomorphic to C_{∞} and every finite group of order n is isomorphic to C_n .

Definition 2 (Order of an Element in a Group). The order of an element a in a group is the order of the cyclic group it generates. It is denoted by o(a).

Thus $o(a) = \infty$ iff $a^n = 1 \implies n = 0$ or, in additive notation, $na = 0 \implies n = 0$. We have $o(a) = n < \infty$ iff $a^n = 1$ and $a^k \ne 1$ if $1 \le k < n$ or, in additive notation, na = 0 and $ka \ne 0$ if $1 \le k < n$.

We now look at the set of subgroups of a cyclic group. The set of subgroups of any group G are partially ordered by inclusion. Moreover, with respect to this partial order, every pair of subgroups H, K of G have a greatest lower bound (glb), namely $H \cap K$, and a least upper bound (lub), namely $H \cup K$. Such a partially ordered set is called a lattice (see text: Chapter 8). We denote the lattice of subgroups of G by $\mathcal{L}(G)$. If we replace \subseteq by \supseteq we get a lattice $\mathcal{L}_{\mathrm{opp}}(G)$ in which $\mathrm{glb}(H,K) = < H \cup K > \mathrm{and} \ \mathrm{lub}(H,K) = H \cap K$.

The natural numbers are partially ordered by the divisibility relation | where k|m means $\exists n \in \mathbb{N}$ with m = nk. The greatest lower bound of two natural numbers m, n is their greatest common divisor $\gcd(m, n)$ and their least upper bound is their least common multiple $\operatorname{lcm}(m, n)$. Note that $\gcd(0,0)$ does not exist if greatest is with respect the usual ordering of \mathbb{N} . Since $n|m \iff n\mathbb{Z} \supseteq m\mathbb{Z}$, we see that the mapping $n \mapsto n\mathbb{Z}$ is an isomorphism of the lattice $(\mathbb{N}, |)$ with the lattice $\mathcal{L}_{\operatorname{opp}}(\mathbb{Z}, +)$. In particular, we have $d = \gcd(m, n) \iff d\mathbb{Z} = m\mathbb{Z} + n\mathbb{Z}$ and $\ell = \operatorname{lcm}(m, n) \iff \ell\mathbb{Z} = m\mathbb{Z} \cap n\mathbb{Z}$.

Theorem 3. Let (G, \cdot) be a finite cyclic group of order n generated by a and let $\phi : \mathbb{Z} \to G$ be the homomorphism defined by $\phi(k) = a^k$. Then, the mapping $H \mapsto \phi^{-1}(H)$ is an isomorphism of the lattice of subgroups of G with the lattice of subgroups of $(\mathbb{Z}, +)$ which contain $n\mathbb{Z}$.

Proof. Since $\phi(\phi^{-1}(H)) = H$ it suffices to prove that $I = \phi^{-1}(\phi(I))$ for every subgroup of \mathbb{Z} which contains $n\mathbb{Z}$. For such a subgroup we have $I = d\mathbb{Z}$ with d|n and $\phi(I) = \langle a^d \rangle$. Hence $\phi^{-1}(\phi(I)) = \langle d + n\mathbb{Z} \rangle = d\mathbb{Z} = I$.

Corollary 4. If (G, \cdot) is a cyclic group of order n and generated by a, the the mapping $d \mapsto < a^d >$ is an isomorphism of the lattice of divisors of n with the lattice $\mathcal{L}_{opp}(G)$. In H is a subgroup of G and d is the smallest positive integer with $a^d \in H$ then $H = < a^d >$.

Corollary 5. If G is a finite cyclic group and d|n there is a unique subgroup H of G of order d. If $G = \langle a \rangle$ then $H = \langle a^{n/d} \rangle$.

This follows from the fact that d is the order of $a^{n/d}$.

September 28, 1997