McGill University Math 370A: Algebra III Assignment 3: due Wednesday, October 15, 1997

- 1. Read Text: section 8.1. Determine the lattice of subgroups of D_4 and Q_8 .
- 2. Text: p. 53, #2.
- 3. Text: p. 57, #3. Show also that this group is isomorphic to the group in problem 5 on page 36.
- 4. Text: p. 58, #6.
- 5. Text: p. 58, #11.
- 6. Text: p. 63, #2.
- 7. Text: p. 63, #5.
- 8. Text: p. 63, #6.
- 9. Text: p. 63, #8.
- 10. Let $(H, \cdot, 1)$, $(K, \cdot, 1)$ be groups and let ϕ be a homomorphism of K into Aut(H), the automorphism group of H.
 - (a) Show that the binary operation on $G = H \times K$ defined by

$$(h,k)(h',k') = (h\phi_k(h'),kk'),$$

where $\phi_k = \phi(k) \in \text{Aut}(H)$, is a group structure on G. This group is called a semi-direct product of H and K and is denoted by $H \rtimes_{\phi} K$;

- (b) If $h \in H$, $k \in K$, let $\overline{h} = (h, 1)$, $\overline{k} = (\underline{1}, \underline{k})$ and let $\overline{H} = \{\overline{h} | h \in H\}$, $\overline{K} = \{\overline{k} | k \in K\}$. Show that $\overline{H}, \overline{K} \leq G, \overline{H} \cap \overline{K} = 1$ and $G = \overline{H} \cdot \overline{K}$;
- (c) If $h \in H$, $k \in K$, show that $\overline{k} \cdot \overline{h} \cdot \overline{k}^{-1} = \overline{\phi_k(h)}$. Deduce that \overline{H} is a normal subgroup of G and that $G/\overline{H} \cong \overline{K}$.
- (d) If G is any group having subgroups H, K such that G = HK, $H \cap K = 1$ and H is normal in G, show that G is a semi-direct product of H and K.