AN INTRODUCTION TO THE THEORY OF NUMBERS

Fifth Edition, First Printing by Ivan Niven Herbert S. Zuckerman Hugh L. Montgomery

John Wiley (New York), 1991

CORRECTIONS

PAGE/LINE

v/-8	for '(Section 2.4)' read '(Section 2.5)'
v/-7	for 'Hansel' read 'Hensel' (Gretel's theorem was omitted)
vi/-4	After 'C. Pomerance' insert 'J. Rickert'
vi/-3	between 'H.' and 'C. Williams' delete 'J. Rickert'
vii/7	for 'Bionomial' read 'Binomial'
2/-11	for '135' read '133'
4/18	for $\{-2, -1, 0, 1, 2,\}$ ' read $\{\ldots, -2, -1, 0, 1, 2, \ldots\}$ '
6/19	for ' $a = 248$ ' read ' $a = 428$ '
27/2	for 'Let \mathcal{N} denote' read 'Let N denote'
33/-11	As of July, 1992, the largest prime known is M_{756839} .
53/4	for $(p-1) \equiv -1'$ read $(p-1)! \equiv -1'$
56/2	for ' $ac + bc$ ' read ' $ad + bc$ '
72/-1	for ' p^{α_r} ' read ' p^{α_i} '
88/5	after ' $x^2 + x + 47$ ' insert ' $\equiv 0$ '
88/7	for ' $a = 1$ ' read ' $a \equiv 1$ '
88/-17	for $x^2 + x + 7 \pmod{81}$ read $x^2 + x + 7 \equiv 0 \pmod{81}$
88/-16	for $x^2 + x + 7 \pmod{3}$ read $x^2 + x + 7 \equiv 0 \pmod{3}$
107/3	insert 'and $k > 0$ '
107/-12	after 'if and only if' insert ' m is composite and'
108/-8	for '(mod m)' read '(mod q)'
110/14	for $x^2 \equiv a \pmod{p}$ read $v^2 \equiv k \pmod{p}$
114/-11	for ' $x^2 \equiv a$ ' read ' $(x - r)^2 \equiv k$ '
130/25	for 'Corollary 2.29' read 'Corollary 2.30'
141/Problem 18	replace '1111111111111' by '1111118111111' (in two places)
142/3	before '.' insert 'and that $p > 2$ '
153/10	insert 'g.c.d. $(m_1, m_2) = 1$ '

OVER

153/-11	for 'if $\left(\frac{d}{p}\right) = 1$.' read 'if $p d$ or $\left(\frac{d}{p}\right) = 1$.'
153/-8	for $\binom{d}{p} = 1$ read $\binom{d}{p} = 1$ or 0' (in two places)
162/18	after 'and only if' insert ' $p = 2, p = 5, or'$
162/-6	after $\binom{p}{5} = 1$ insert or 0'
162/-3	after 'if and only if' insert ' $p = 5$ or'
162/-1	after 'if and only if' insert ' $p = 2$ or'
181/10	for ' $-x = n - 1 + 1 - \nu$ ' read ' $-x = -n - 1 + 1 - \nu$ '
189/2	after ' $p^{\beta} n$ ' add ', $\beta > 0$ '
195/Problem 5	Replace first '.' by ','
196/6	for 'Theory' read 'Theorem'
205/Problem 14	after 'distinct' insert 'and non-consecutive'
219/3	after 'solvable' insert 'and $b \neq 0$ '
233/-9	for ' v ' read ' y '
245/7	for ' $b = 1$ ' read ' $b = -1$ '
245/7	for ' $y = -1$ ' read ' $y = 1$ '
249/2	after ' $N(p) = 2p^2 - p$ ' add ', except that $N(2) = 4$ '
279/17	for ' b is odd' read ' b is even'
302/-2	for 'at' read 'a'
323/1	for '207' read '210'
330/-3	for $i \geq 1$ read $i > 1$.
333/-14	for $a_0 > 0$ read $a_0 \ge 0$.
340/-15	for 'integers x and all y ' read 'pairs of integers x, y '
340/-14	for 'to ξ ' read ' h_n/k_n to ξ with $n > 0$ '
344/Problem 4	replace $\xi - \frac{h}{k}$ by $ \xi - \frac{h}{k} $
456/-7	for $\sum_{k=0}^{p(k)} x^k$, read $\sum_{k=0}^{\infty} p(k) x^k$,
512/7	for '3360' read '3660'.
514/-17	for '1, 4, 7 (mod 27)' read '4, 13, 22 (mod 27)'
515/7	for '(b) $(x+1)^2 \equiv 4$ ' read '(b) $(x-6)^2 \equiv 4$ '
515/8	for '(d) $(2x+1)^2 \equiv 5$ ' read '(d) $(x-6)^2 \equiv 11$ '
515/9	for ' $x \equiv \pm 5 \pmod{19}$ ' read ' $x \equiv \pm 9 \pmod{19}$ '
$516/\S{3.1};$ 6. (a)	for $\pm 1, \pm 2, \pm 3 \pmod{13}$ read $\pm 1, \pm 3, \pm 4 \pmod{13}$
518/-15	insert '(7, 24, 25), (24, 7, 25)'.

Revised 8 September, 1994