
Reference Guide to
Turbo Pascal Programs

ArFcnTab
Function Constructs a TABle of values of the six ARithmetic FunCtioNs ω(n) =∑

p|n 1, Ω(n) =
∑
pa‖n a , µ(n), d(n) =

∑
d|n 1, φ(n), and σ(n) =∑

d|n d .

Syntax arfcntab

Commands PgUp Display the preceding 20 values
PgDn Display the next 20 values
J Jump to a new point in the table
P Print 500 values, starting at the top of the displayed screen

Esc Escape from the environment

Restrictions 1 ≤ n < 109

Algorithm When the program begins execution, it first constructs a list of the primes
not exceeding 109/2 , by sieving. These primes are used for trial division.
The factorizations are determined simultaneously for all 20 numbers (or
all 500 numbers, in the case of printing).

See also Pi

Car
Function Computes the CARmichael function c(m), which is defined to be the

least positive integer c such that ac ≡ 1 (mod m) whenever (a,m) = 1.

Syntax car [m]

Restrictions 1 ≤ m < 1018

Algorithm First the canonical factorization of m is determined by trial division. If
p is an odd prime then c(pj) = pj−1(p − 1). Also, c(2) = 1, c(4) = 2,
and c(2j) = 2j−2 for j ≥ 3. Finally, c(m) is the least common multiple
of the numbers c(pα) for pα‖m .

Reference Guide to Turbo Pascal Programs 69

See also Phi

Comments This program provides a user interface for the function Carmichael found
in the NoThy unit. To see how the algorithm is implemented, examine
the file nothy.pas.

ClaNoTab
Function Constructs a TABle of CLAss Numbers of positive definite binary qua-

dratic forms. The number H(d) is the total number of equivalence
classes of such forms of discriminant d , while h(d) counts only those
equivalence classes consisting of primitive forms.

Syntax clanotab

Commands PgUp Display the preceding 40 values
PgDn Display the next 40 values
J Jump to a new point in the table
P Print h(d) and H(d) for −2400 ≤ d < 0

Esc Escape from the environment

Restrictions −104 ≤ d < 0

Algorithm All reduced triples (a, b, c) are found, with 0 < a <
√

104/3. When
a reduced triple is located, the value d = b2 − 4ac is calculated, and
the count of H(d) is increased by 1. If gcd(a, b, c) = 1 then the count
of h(d) is also increased by 1. The entire table is calculated before the
first screen of values appears. This may take several minutes on a slow
machine.

See also QFormTab, Reduce

Comments The time required to calculate class numbers in this manner in the range
−D ≤ d < 0 is roughly proportional to D3/2 , and roughly D numbers
must be stored. By adopting a more sophisticated algorithm, one could
calculate only those values that are to appear on a given screenful, and
the time required for the calculation would be much smaller, making it
feasible to construct a program of this sort that would accommodate d in
the range −109 ≤ d < 0, say. For faster algorithms, see D. Shanks, Class
number, a theory of factorization, and genera, Proc. Sympos. Pure Math.
20, Amer. Math. Soc. Providence, 1970, 415–440. For a method that is
theoretically still faster, but that may be challenging to implement, see
J. L. Hafner and K. S. McCurley, A rigorous subexponential algorithm
for computation of class groups, J. Amer. Math. Soc. 2 (1989), 837–850.

CngArTab
Function Displays the addition and multiplication TABles for CoNGruence ARith-

metic (mod m).

70 Reference Guide to Turbo Pascal Programs

Syntax cngartab

Commands ↑ Move up
↓ Move down
← Move left
→ Move right
a Start at column a
b Start at row b
m Set modulus m
s Switch between addition and multiplication
r Display only reduced residues (in multiplication table)
p Print the table (if m ≤ 24)

Esc Escape from the environment

Restrictions 1 ≤ m < 109

See also PowerTab

CRT
Function Determines the intersection of two arithmetic progressions. Let g =

(m1,m2). The set of x such that x ≡ a1 (mod m1), x ≡ a2 (mod m2)
is empty if a1 6≡ a2 (mod g). Otherwise the intersection is an arith-
metic progression a (mod m). In the Chinese Remainder Theorem it is
required that g = 1, and then m = m1m2 . In general, m = m1m2/g .

Syntax crt [a1 m1 a2 m2]

Restrictions |ai| < 1018 , 1 ≤ mi < 1018

Algorithm First the linear congruence m1y ≡ a2 − a1 (mod m2) is solved. If a1 6≡
a2 (mod g), then this congruence has no solution, and the intersection of
the two given arithmetic progressions is empty. Otherwise, let y denote
the unique solution of this congruence in the interval 0 ≤ y < m2/g .
Then the intersection of the two given arithmetic progressions is the set
of integers x ≡ a (mod m) where a = ym1 + a1 and m = m1m2/g .

See also CRTDem, IntAPTab, LinCon, LnCnDem

Comments This program provides a user interface for the procedure CRThm found
in the NoThy unit. To see how the algorithm is implemented, examine
the file nothy.pas.

CRTDem
Function Demonstrates the method employed to determine the intersection of two

given arithmetic progressions.

Reference Guide to Turbo Pascal Programs 71

Syntax crtdem [a1 m1 a2 m2]

Restrictions |ai| < 1018 , 1 ≤ mi < 1018

Algorithm See the description given for the program CRT.

See also CRT, IntAPTab, LnCnDem

DetDem
Function Demonstrates the method used to evaluate det(A) (mod m).

Syntax detdem

Restrictions 0 < m < 109 , A = [aij] is n× n with 1 ≤ n ≤ 9, |aij | < 109

Algorithm See description for the program DetModM.

See also DetModM, SimLinDE

DetModM
Function Determines det(A) (mod m).

Syntax detmodm

Commands A Assign dimension of matrix
B Build matrix
C Choose modulus
D Determine value of det(A) (mod m)
E Exit
F Form altered matrix

Restrictions 0 < m < 109 , A = [aij] is n× n with 1 ≤ n ≤ 9, |aij | < 109

Algorithm Row operations are performed until the matrix is upper-triangular. After
each row operation, the elements of the new matrix are reduced modulo
m . The row operations used are of the following two types: (i) Exchange
two rows (which multiplies the determinant by −1); (ii) Add an integral
multiple of one row to a different row (which leaves the determinant
unchanged).

See also DetDem, SimLinDE

Comments This program provides a user interface for the function DetModM, which
is defined in the file det.i.

EuAlDem1
Function Demonstrates the calculation of (b, c) by using the identities (b, c) =

(−b, c), (b, c) = (c, b), (b, c) = (b+mc, c), (b, 0) = |b| .

72 Reference Guide to Turbo Pascal Programs

Syntax eualdem1

Restrictions |b| < 1018 , |c| < 1018

Algorithm The number m is chosen so that b + mc lies between 0 and c . The
systematic use of the Division Algorithm in this way is known as the
Euclidean Algorithm.

See also EuAlDem2, EuAlDem3, FastGCD, GCD, GCDTab,
LnComTab, SlowGCD

EuAlDem2
Function Demonstrates the extended EUclidean ALgorithm by exhibiting a table

of the quotients qi , remainders ri , and the coefficients xi , yi in the
relations ri = xib+ yic .

Syntax eualdem2

Commands PgUp Display the top portion of the table
PgDn Display the bottom portion of the table
b Enter a new value of b
c Enter a new value of c
P Print the table

Esc Escape from the environment

Restrictions 0 < b < 1018 , 0 < c < 1018

See also EuAlDem1, EuAlDem3, FastGCD, GCD, GCDTab,
LnComTab, SlowGCD

EuAlDem3
Function Demonstrates the extended EUclidean ALgorithm in the same manner as

EuAlDem2, but with rounding to the nearest integer instead of rounding
down.

Syntax eualdem3

Commands PgUp Display the top portion of the table
PgDn Display the bottom portion of the table
b Enter a new value of b
c Enter a new value of c
P Print the table

Esc Escape from the environment

Restrictions 0 < b < 1018 , 0 < c < 1018

Reference Guide to Turbo Pascal Programs 73

See also EuAlDem1, EuAlDem2, FastGCD, GCD, GCDTab,
LnComTab, SlowGCD

FacTab
Function Constructs a TABle of the least prime FACtor of odd integers from

10N + 1 to 10N + 199.

Syntax factab

Commands
PgUp Display the preceding 100 values (i.e. decrease N by 20)
PgDn Display the next 100 values (i.e. increase N by 20)
N New N ; view table starting at 10N + 1

Esc Escape from the environment

Restrictions Integers not exceeding 109 + 189 (i.e. 0 ≤ N ≤ 99999999).

Algorithm When the program begins execution, it first constructs a list of the odd
primes not exceeding

√
109 + 200, by sieving. We call these the “small

primes.” There are 15803 such primes, the last one being 31607. The
next prime after this is 31621. When N is specified, the odd integers
in the interval [10N, 10N + 200] are sieved by those small primes not
exceeding

√
10N + 200; least prime factors are noted as they are found.

See also Factor, GetNextP

Factor
Function FACTORs a given integer n .

Syntax factor [n]

Restrictions |n| < 1018

Algorithm Trial division. After powers of 2, 3, and 5 are removed, the trial divisors
are reduced residues modulo 30.

See also P-1, P-1Dem, Rho, RhoDem

Comments Factors are reported as they are found. The program can be interrupted
by touching a key. This program provides a user interface for the pro-
cedure Canonic found in the NoThy unit. To view the source code,
examine the file nothy.pas.

FareyTab
Function Constructs a TABle of FAREY fractions of order Q . Fractions are dis-

played in both rational and decimal form, up to 20 of them at a time.

74 Reference Guide to Turbo Pascal Programs

Syntax fareytab

Commands PgUp View the next 19 smaller entries
PgDn View the next 19 larger entries
D Center the display at a decimal x
R Center the display at a rational number a/q
P Print the table (allowed for Q ≤ 46)

Esc Escape from the environment

Restrictions 1 ≤ Q < 109

Algorithm If a/q and a′/q′ are neighboring Farey fractions of some order Q , say
a/q < a′/q′ , then a′q − q′a = 1. By the extended Euclidean algorithm,
for given relatively prime a and q we find x and y such that xq−ya = 1.
Then q′ = y + kq , a′ = x+ ka where k is the largest integer such that
y + kq ≤ Q . With a/q given, the next smaller Farey fraction a′′/q′′ is
found similarly. The Farey fractions surrounding a given decimal number
x are found by the continued fraction algorithm. Fractions are computed
only as needed by the screen or the printer.

FastGCD
Function Times the execution of the Euclidean algorithm in calculating the Great-

est Common Divisor of two given integers.

Syntax fastgcd

Restrictions |b| < 1018 , |c| < 1018

Algorithm Euclidean algorithm, rounding down.

See also GCD, SlowGCD

FctrlTab
Function Provides a table of n! (mod m). Each screen displays 100 values.

Syntax fctrltab

Commands PgUp View the preceding 100 entries
PgDn View the next 100 entries
J Jump to a new position in the table
M Enter a new modulus
P Print the first 60 lines of the table

Esc Escape from the environment

Restrictions 0 ≤ n ≤ 10089, 0 < m < 106

Reference Guide to Turbo Pascal Programs 75

Algorithm All 10089 values are calculated as soon as m is specified, unless m <
10089, in which case only m values are calculated.

GCD
Function Calculates the Greatest Common Divisors of two given integers.

Syntax gcd [b c]

Restrictions |b| < 1018 , |c| < 1018

Algorithm Euclidean algorithm with rounding to the nearest integer.

See also EuAlDem1, EuAlDem2, EuAlDem3, FastGCD, GCDTab, LnComTab,
SlowGCD

Comments This program provides a user interface for the function of the same name
in the unit NoThy. To see how the algorithm is implemented, inspect
the file nothy.pas.

GCDTab
Function Displays (b, c) for pairs of integers.

Syntax gcdtab

Commands ↑ Move up
↓ Move down
← Move left
→ Move right
b Center table on column b
c Center table on row c

Esc Escape from the environment

Restrictions |b| < 1018 , |c| < 1018

Algorithm Euclidean algorithm.

See also GCD, EuAlDem1, EuAlDem2, EuAlDem3, LnComTab

GetNextP
Function Finds the least Prime larger than a given integer x , if x ≤ 109 . If

109 < x < 1018 , it finds an integer n , n > x , such that the interval
(x, n) contains no prime but n is a strong probable prime to bases 2,
3, 5, 7, and 11. A rigorous proof of the primality of n can be obtained
by using the program ProveP.

76 Reference Guide to Turbo Pascal Programs

Syntax getnextp [x]

Restrictions 0 ≤ x < 1018

Algorithm If 0 ≤ x ≤ 109 then the least prime larger than x is found by sieving.
If 109 < x < 1018 then strong probable primality tests are performed.

See also FacTab, ProveP

Comments For 0 ≤ x ≤ 109 , this program provides a user interface for the function
of the same name in the unit NoThy. To see how the algorithm is
implemented, inspect the file nothy.pas. For 109 < x < 1018 this
program uses the function SPsP, which is found in the unit NoThy, with
source code in the file nothy.pas.

Hensel

Function Provides a table of solutions of f(x) ≡ 0 (mod pj), in the manner of
HENSEL’s lemma. All roots (mod p) are found, by trying every residue
class. If f(a) ≡ 0 (mod p) and f ′(a) 6≡ 0 (mod p), then a tower of roots
lying above a is displayed. If f ′(a) ≡ 0 (mod p) then roots lying above
a are exhibited only one at a time. Roots (mod pj) are displayed both in
decimal notation and in base p , a =

∑
i≥1 cip

i−1 . The user must choose
between viewing singular or non-singular roots. The display starts with
a non-singular root, if there are any.

Syntax hensel

Commands ↑ Lift to larger values of j
↓ Drop to smaller values of j
← Shift left in the table
→ Shift right in the table
S Switch to singular roots
N Switch to non-singular roots
D Define the polynomial
p Choose the prime modulus

Esc Escape from the environment

Restrictions 2 ≤ p < 2000, pj ≤ 1018 , f(x) must be the sum of at most 20 mono-
mials

Algorithm The polynomial f(x) is evaluated at every residue class, and an array
is formed of the roots. For each root found, the quantity f ′(x) is calcu-
lated, in order to determine whether the root is singular or not.

See also PolySolv

Reference Guide to Turbo Pascal Programs 77

HSortDem
Function DEMonstrates the HeapSORT algorithm of J. W. J. Williams, by apply-

ing the algorithm to n randomly chosen integers taken from the interval
[0, 99] . This algorithm is employed in the programs Ind and IndDem.

Syntax hsortdem

Restrictions 1 ≤ n ≤ 31

Ind
Function Given g , a , and p , finds the least non-negative ν such that gν ≡ a

(mod p), if such a ν exists. Thus, if g is a primitive root of p , then
ν = indg a .

Syntax ind [g a p]

Restrictions |g| < 109 , |a| < 109 , 1 < p < 109 , (g, p) = 1

Algorithm First LinCon is used to find g (mod p) so that gg ≡ 1 (mod p). The
number s is taken to be either the integer nearest

√
p or else 10000,

which ever is smaller. A table is made of the residue classes agj (mod
p) for 0 ≤ j < s . This table is sorted by the HeapSort algorithm into
increasing order. For j = 0, 1, . . . , a search is conducted (by binary
subdivisions) to see whether the residue class gjs (mod p) is in the
table. If a match is found, then ν = is + j . If j reaches p/s without
finding a match, then a is not a power of g (mod p). Thus the index is
found in time O(p1/2 log p). This method was suggested by D. Shanks.

See also IndDem, IndTab, Power, PowerTab

IndDem
Function DEMonstrates procedure used to compute indg a (mod p).

Syntax inddem [g a p]

Restrictions |g| < 109 , |a| < 109 , 1 < p < 109

Algorithm See the description of the program Ind.

See also Ind, IndTab, Power, PowerTab

IndTab
Function Generates a TABle of INDices of reduced residue classes modulo a prime

number p , with respect to a specified primitive root. Also generates a

78 Reference Guide to Turbo Pascal Programs

table of powers of the primitive root, modulo p . Up to 200 values are
displayed a one time.

Syntax indtab

Commands PgUp View the preceding 200 entries
PgDn View the next 200 entries
J Jump to a new position in the table
E Switch from indices to exponentials
I Switch from exponentials to indices
M Enter a new prime modulus
B Choose a new primitive root to use as the base
P Print table(s)

Esc Escape from the environment

Restrictions p < 104

Algorithm The least positive primitive root g of p is found using the program
PrimRoot. The powers of g modulo p and the indices with respect to
g are generated in two arrays.

See also PowerTab, PrimRoot

IntAPTab
Function Creates a TABle with rows indexed by a (mod m) and columns indexed

by b (mod n). The INTersection of these two Arithmetic Progressions
is displayed (if it is nonempty) as a residue class (mod [m,n]).

Syntax intaptab

Commands ↑ Move up
↓ Move down
← Move left
→ Move right
a Start at row a
b Sart at column b
m Set modulus m
n Set modulus n
p Print (when table is small enough)

Esc Escape from the environment

Restrictions m < 104 , n < 104

Algorithm Chinese Remainder Theorem

See also CRT, CRTDem

Comments Reduced residues are written in white, the others in yellow.

Reference Guide to Turbo Pascal Programs 79

Jacobi
Function Evaluates the JACOBI symbol

(
P
Q

)
.

Syntax jacobi [P Q]

Restrictions |P | < 1018 , 0 < Q < 1018

Algorithm Modified Euclidean algorithm, using quadra- tic reciprocity.

See also JacobDem, JacobTab

Comments This program provides a user interface for the function of the same name
found in the unit NoThy. To see how the algorithm is implemented,
inspect the file nothy.pas.

JacobDem
Function DEMonstrates the use of quadratic reciprocity to calculate the JACOBi

symbol
(
P
Q

)
.

Syntax jacobdem [P Q]

Restrictions |P | < 1018 , 0 < Q < 1018

Algorithm Modified Euclidean algorithm, using quadratic reciprocity.

See also Jacobi, JacobTab

JacobTab
Function Generates a TABle of values of the JACOBi function, with 200 values

displayed at one time.

Syntax jacobtab

Commands PgUp View the preceding 200 entries
PgDn View the next 200 entries
J Jump to a new position in the table
Q Enter a new denominator Q
P Print 500 lines, starting with the top line displayed

Esc Escape from the environment

Restrictions |P | < 1018 , 0 < Q < 1018

Algorithm Values are calculated as needed, using the function Jacobi.

See also Jacobi, JacobDem

80 Reference Guide to Turbo Pascal Programs

LinCon
Function Finds all solutions of the LINear CONgruence ax ≡ b (mod m).

Syntax lincon [a b m]

Restrictions |a| < 1018 , |b| < 1018 , 0 < m < 1018

Algorithm The extended Euclidean algorithm is used to find both the number g =
(a,m) and a number u such that au ≡ g (mod m). If g 6 |b then there
is no solution. Otherwise, the solutions are precisely those x such that
x ≡ c (mod m/g) where c = ub/g .

See also LnCnDem

Comments This program provides a user interface for a function of the same name
in the unit NoThy. To see how the algorithm is implemented, inspect
the file nothy.pas.

LnCnDem
Function DEMonstrates the method used to find all solutions to the LiNear CoN-

gruence ax ≡ b (mod m).

Syntax lncndem [a b m]

Restrictions |a| < 1018 , |b| < 1018 , 0 < m < 1018

Algorithm See the description given for LinCon.

See also LinCon

LnComTab
Function Creates a TABle of the LiNear COMbinations bx+ cy of b and c , with

columns indexed by x and rows indexed by y .

Syntax lncomtab

Commands ↑ Move up
↓ Move down
← Move left
→ Move right
x Left column is x
y Bottom row is y
b Set value of b
c Set value of c

Esc Escape from the environment

Reference Guide to Turbo Pascal Programs 81

Restrictions |b| < 109 , |c| < 109 , |x| < 109 , |y| < 109

See also GCD, GCDTab, EuAlDem1, EuAlDem2, EuAlDem3

Lucas
Function Calculates the LUCAS functions Un, Vn (mod m). Here the Un are

generated by the linear recurrence Un+1 = aUn + bUn−1 with the initial
conditions U0 = 0, U1 = 1. The Vn satisfy the same linear recurrence,
but with the initial conditions V0 = 2, V1 = a .

Syntax lucas [n [a b] m] If n,m are specified on the command line, but not
a, b , then by default a = b = 1.

Restrictions 0 ≤ n < 1018 , |a| < 1018 , |b| ≤ 1018 , 0 < m ≤ 1018

Algorithm To calculate Un (mod m), the pair of residue classes Uk−1, Uk (mod m)
is determined for a sequence of values of k , starting with k = 1. If this
pair is known for a certain value of k , then it can be found with k
replaced by 2k , by means of the duplication formulae

U2k−1 = U2
k + bU2

k−1,

U2k = 2bUk−1Uk + aU2
k .

This is called “doubling.” Alternatively, the value of k can be increased
by 1 by using the defining recurrence. This is called “sidestepping.” By
repeatedly doubling, with sidesteps interspersed as appropriate, eventu-
ally k = n .

To calculate Vn (mod m), the pair Vk, Vk+1 of residue classes (mod
m) is determined for a sequence of values of k , starting with k = 0. The
duplication formulae are now

V2k = V 2
k − 2(−b)k,

V2k+1 = VkVk+1 − a(−b)k.

Instead of sidestepping separately, an arithmetic economy is obtained by
doubling with sidestep included by means of the formulae

V2k+1 = VkVk+1 − a(−b)k,
V2k+2 = V 2

k+1 − 2(−b)k+1.

By employing these transformations we eventually reach k = n .
The k that arise have binary expansions that form initial segments

of the binary expansion of n , in the same manner as in the alternative
powering algorithm discussed in the program PwrDem2.

The system of calculation here is superior to that found in the Fifth

82 Reference Guide to Turbo Pascal Programs

Edition of NZM, where the sidestep formula involves division by 2 and
is therefore appropriate only for odd moduli.

See also LucasDem, LucasTab, PwrDem2

Comments If a = b = 1 then Un, Vn are the familiar Fibonacci and Lucas sequences
Fn, Ln , respectively. This program provides a user interface for the
functions LucasU and LucasV found in the unit NoThy. To see how the
algorithm is implemented, inspect the file nothy.pas.

LucasDem
Function DEMonstrates the method used to calculate the LUCAS functions Un ,

Vn (mod m).

Syntax lucasdem [n [a b] m]

Restrictions 0 ≤ n < 1018 , |a| < 1018 , |b| < 1018 , 0 < m < 1018

Algorithm See the description given for the program Lucas.

See also Lucas, LucasDem, PwrDem2

LucasTab
Function Generates a TABle of values of the LUCAS functions Un, Vn (mod m).

Syntax lucastab

Commands PgUp Display the preceding 100 values
PgDn Display the next 100 values
U Switch from V to U
V Switch from U to V
n Move to a screen with n on the top line
a Choose a new value for the parameter a
b Choose a new value for the parameter b
M Choose a new modulus m
P Print the initial 60 rows of the table (0 ≤ n ≤ 599)

Esc Escape from the environment

Restrictions 0 ≤ n < 106 , |a| < 106 , |b| < 106 , 0 < m < 106

See also Lucas, LucasDem

Mult
Function MULTiplies residue classes. If a, b , and m are given with m > 0, then

c is found so that c ≡ ab (mod m) and 0 ≤ c < m .

Reference Guide to Turbo Pascal Programs 83

Syntax mult [a b m]

Restrictions |a| < 1018 , |b| < 1018 , 0 < m < 1018

Algorithm If m ≤ 109 then ab is reduced modulo m . If 109 < m ≤ 1012 then
we write a = a1106 + a0 , and compute a1b106 + a0b modulo m , with
reductions modulo m after each multiplication. Thus all numbers en-
countered have absolute value at most 1018 . If 1012 < m < 1018 then
we write a = a1109 + a0 , b = b1109 + b0 ; we compute ab/m in floating-
point real arithmetic and let q be the integer nearest this quantity; we
write q = q1109 + q0 ; m = m1109 +m0 . Then

ab−qm = ((a1b1−q1m1)109+a1b0+a0b1−q1m0−q0m1)109+a0b0−q0m0.

The right hand side can be reliably evaluated, and this quantity has
absolute value less than m . If it is negative we add m to it to obtain
the final result. The assumption is that the machine will perform integer
arithmetic accurately for integers up to 4 · 1018 in size. The object is
to perform congruence arithmetic with a modulus up to 1018 without
introducing a full multiprecision package.

See also MultDem1, MultDem2, MultDem3

Comments This program provides a user interface for the function of the same name
found in the unit NoThy. To see how the algorithm is implemented,
inspect the file nothy.pas.

MultDem1
Function DEMonstrates the method employed by the program MULT when 109 <

m < 1012 .

Syntax multdem1

Restrictions |a| < 1018 , |b| < 1018 , 0 < m < 1018

Algorithm See Problem *21, Section 2.4, p. 83, of the Fifth Edition of NZM.

See also Mult, MultDem2, MultDem3

MultDem2
Function DEMonstrates the method used by the program MULT when 1012 <

m < 1018 .

Syntax multdem2

Restrictions |a| < 1018 , |b| < 1018 , 0 < m < 1018

84 Reference Guide to Turbo Pascal Programs

Algorithm See the description given for the program Mult.

See also Mult, MultDem1, MultDem3

MultDem3
Function DEMonstrates the method used by the program MULT, in which the

methods of MultDem1 and MultDem2 are merged.

Syntax multdem3

Restrictions |a| < 1018 , |b| < 1018 , 0 < m < 1018

Algorithm See the description given for the program Mult.

See also Mult, MultDem1, MultDem2

Order
Function Calculates the ORDER of a reduced residue class a (mod m). That is,

it finds the least positive integer h such that ah ≡ 1 (mod m).

Syntax order [a m [c]]

Restrictions |a| < 1018 , 0 < m < 1018 , 0 < c < 1018

Algorithm The parameter c should be any known positive number such that ac ≡ 1
(mod m). For example, if m is prime then one may take c = m − 1.
If a value of c is not provided by the user, or if the value provided is
incorrect, then the program assigns c = Carmichael(m). (This involves
factoring m by trial division.) Once c is determined, then c is factored
by trial division. Prime divisors of c are removed, one at a time, to
locate the smallest divisor d of c for which ad ≡ 1 (mod m). This
number is the order of a modulo m .

See also OrderDem

Comments This program provides a user interface for a function of the same name
found in the unit NoThy. To see how the algorithm is implemented,
inspect the file nothy.pas.

OrderDem
Function DEMonstrates the method used to calculate the order of a reduced

residue class a (mod m).

Syntax order [a m [c]]

Reference Guide to Turbo Pascal Programs 85

Restrictions |a| < 1018 , 0 < m < 1018 , 0 < c < 1018

Algorithm See the description given for the program Order.

See also Order

P–1
Function Factors a number n using the Pollard p− 1 method.

Syntax p-1 [n [a]] If n is specified on the command line, but not a , then by
default a = 2.

Restrictions 1 < n < 1018 , 1 < a < 1018

Algorithm The powering algorithm is used to calculate ak! (mod n) for increasingly
large k , in the hope that a k will be found such that 1 < (ak!−1, n) < n .
This method is generally fast for those n with a prime factor p such that
p− 1 is composed only of small primes.

See also P-1Dem, Rho, RhoDem, Factor

P–1Dem
Function Demonstrates the method used by the Pollard p− 1 factoring scheme.

Syntax p-1dem

Restrictions 1 < n < 1018 , 1 < a < 1018

Algorithm See the description given for the program P-1.

See also P-1

PascalsT
Function Constructs a table of PASCAL’S Triangle

(
n
k

)
(mod m). Rows are in-

dexed by n , columns by k . Up to 20 rows and 18 columns are displayed
at one time.

Syntax pascalst

Commands ↑ Display the preceding 20 rows
↓ Display the next 20 rows
← Display the preceding 20 columns
→ Display the next 20 columns
T Move to the top of the triangle
M Choose a new modulus

Esc Escape from the environment

86 Reference Guide to Turbo Pascal Programs

Restrictions 0 ≤ k ≤ n < 104 , 0 < m < 103

Algorithm The rows are calculated inductively by the recurrence
(
n
k−1

)
+
(
n
k

)
=(

n+1
k

)
. The entire nth row is calculated, where n is the top row on the

current screen. Other entries in the screen are calculated from the top
row.

Phi
Function Calculates the Euler PHI function of n .

Syntax phi [n]

Restrictions 1 ≤ n < 1018

Algorithm The canonical factorization of n is found by trial division, and then φ(n)
is found by means of the formula φ(n) =

∏
pα‖n p

α−1(p− 1).

Comments This program provides a user interface for a function of the same name
found in the unit NoThy. To see how the algorithm is implemented,
inspect the file nothy.pas.

Pi

Function Determines the number π(x) of primes not exceeding an integer x .

Syntax pi [x]

Restrictions 2 ≤ x106

Algorithm Primes up to 31607 are constructed, by sieving. These primes are used
as trial divisors, to sieve intervals of length 104 until x is reached.

Comments This program would run perfectly well up to 109 , but as the the running
time is roughly linear in x , the smaller limit is imposed to avoid excessive
running times. For faster methods of computing π(x), see the following
papers.
J. C. Lagarias, V. S. Miller, and A. M. Odlyzko, Computing π(x): The
Meissel-Lehmer method, Math. Comp. 44 (1985), 537–560.
J. C. Lagarias and A. M. Odlyzko, New algorithms for computing π(x),
Number Theory: New York 1982, D. V. Chudnovsky, G. V. Chudnovsky,
H. Cohn and M. B. Nathanson, eds., Lecture Notes in Mathematics 1052,
Springer-Verlag, Berlin, 1984, pp. 176–193.
J. C. Lagarias and A. M. Odlyzko, Computing π(x): an analytic method,
J. Algorithms 8 (1987), 173–191.

Reference Guide to Turbo Pascal Programs 87

PolySolv
Function Finds all solutions of a given polynomial congruence P (x) ≡ 0 (mod m).

Syntax polysolv

Commands C Count the zeros
D Define the polynomial
M Choose the modulus

Esc Escape from the environment

Restrictions 1 ≤ m < 104 , P (x) must be the sum of at most 20 monomials, only
the first 100 zeros found are displayed on the screen

Algorithm The polynomial is evaluated at every residue class modulo m .

See also SqrtModP

Comments The running time here is roughly linear in m . When m is large there is
a much faster way. By the Chinese Remainder Theorem it is enough to
consider primepower values of m . By Hensel’s lemma, this in turn can
be reduced to the consideration of prime moduli. In the case of a prime
modulus p , the roots of P (x) modulo p can be found by calculating
(P (x), (x−a)(p−1)/2−1) for various values of a . Here the gcd being cal-
culated is that of two polynomials defined mod p . In the first step of the
Euclidian algorithm, the remainder when (x−a)(p−1)/2−1 is divided by
P (x) should be calculated by applying the powering algorithm to deter-
mine (x − a)(p−1)/2 (modd p, P (x)). This approach extends to provide
an efficient method of determining the factorization of P (x) (mod p).
For more information, see David G. Cantor and Hans Zassenhaus, A new
algorithm for factoring polynomials over finite fields, Math. Comp. 36
(1981), 587–592.

Power

Function Computes ak (mod m) in the sense that it returns a number c such
that 0 ≤ c < m and c ≡ ak (mod m).

Syntax power [a k m]

Restrictions |a| < 1018 , 0 ≤ k < 1018 , 0 < m < 1018

Algorithm Write k in binary, say k =
∑
j∈J 2j . The numbers a2j (mod m) are

constructed by repeated squaring; whenever a j ∈ J is encountered, the
existing product is multiplied by the factor a2j .

See also PowerTab, PwrDem1a, PwrDem1b, PwrDem2

88 Reference Guide to Turbo Pascal Programs

Comments This program provides a user interface for a function of the same name
in the unit NoThy. To see how the algorithm is implemented, inspect
the file nothy.pas.

PowerTab
Function Constructs a TABle of POWERs ak (mod m). Up to 100 powers are

displayed at a time.

Syntax power

Commands PgUp Display the preceding 10 rows
PgDn Display the next 10 rows
B Change the base
E Move to a new exponent
M Change the modulus
P Print the first 60 lines of the table

Esc Escape from the environment

Restrictions |a| < 106 , 0 ≤ k < 106 , 0 < m < 106

Algorithm The first entry on the screen is computed by the powering algorithm.
Then the remaining entries on the screen are determined inductively.

See also CngArTab, Power, PwrDem1a, PwrDem1b, PwrDem2

PrimRoot
Function Finds the least primitive root g of a prime number p , such that g > a .

Syntax primroot [p [a]] If p is specified on the command line but not a , then
by default a = 0.

Restrictions 2 ≤ p < 1018 , |a| < 1018

Algorithm The prime factors q1, q2, . . . , qr of p − 1 are found by trial division.
Then g is a primitive root of p if and only if both gp−1 ≡ 1 (mod p)
and g(p−1)/qi 6≡ 1 (mod p) for all i , 1 ≤ i ≤ r . When a g is found that
satisfies these conditions, not only is g a primitive root of p , but also the
primality of p is rigorously established. The algorithm employed by the
program ProveP proceeds along these lines, but with some short cuts.

See also Order, OrderDem, ProveP

Comments This program provides a user interface for a function of the same name
in the unit NoThy. To see how the algorithm is implemented, inspect
the file nothy.pas.

Reference Guide to Turbo Pascal Programs 89

ProveP
Function PROVEs that a given number p is Prime.

Syntax provep [p]

Restrictions 2 ≤ p < 1018

Algorithm Trial division is applied to p− 1. Whenever a prime factor q of p− 1 is
found, say qk‖(p−1), attempts are made to find an a such that ap−1 ≡ 1
(mod p) but (a(p−1)/q−1, p) = 1. Suppose that such an a is found, and
that p′|p . Let d denote the order of a modulo p′ . Then d|(p − 1) but
d6 |(p − 1)/q , and hence qk‖d . But by Fermat’s congruence d|(p′ − 1),
and hence it can be asserted that qk|(p′ − 1) for every prime factor p′

of p . In other words, all prime factors p′ of p are ≡ 1 (mod qk). If, for
a given q , 200 unsuccessful attempts are made to find an admissible a ,
then presumably p is composite, and the program quits. Otherwise, the
numbers qk found are multiplied together to form a product s . Every
prime factor p′ of p is ≡ 1 (mod s). If s >

√
p then there can be at

most one such prime, and the proof is complete. If p1/3 < s ≤ p1/2 then
there can be at most two such primes, say p = p1p2 . Write pi in base
s , pi = ris + 1. Then p = r1r2s

2 + (r1 + r2)s + 1, and the coefficients
of this polynomial in s can be found by expanding p in base s , say
p = c2s

2 + c1s+ 1. Then r1 and r2 are roots of the quadratic equation
(x − r1)(x − r2) = x2 − c1x + c2 , and hence the discriminant c21 − 4c2
must be a perfect square. In the unlikely event that this quantity is a
perfect square, we are led to a factorization of p ; otherwise we have a
proof that p is prime.

If a point is reached at which it would take less time to test p for
divisibility by numbers d ≡ 1 (mod s), d ≤ √p than has already been
spent trying to factor p−1, then the program automatically switches to
this latter approach.

The trial division of p−1 can be interrupted by touching a key, and
the user can then supply a prime factor q of the remaining unfactored
portion. The user is responsible for verifying that q is prime.

By this method we see that proving the primality of p is no harder
than factoring p− 1, and that for many p it is easier. Further methods
of proving primality have been developed that are faster than the best
known factoring methods. The mathematics exploited by these methods
is much more sophisticated. For more precise information, consult the
following papers.
A. O. L. Atkin and F. Morain, Elliptic curves and primality proving ,
Math. Comp. 61 (1993), 29–68 .
A. K. Lenstra and H. W. Lenstra, Jr., Algorithms in number theory ,
Handbook of Theoretical Computer Science, Vol. A, J. van Leeuwen,
ed., Elsevier, Amsterdam, pp. 673–715.

90 Reference Guide to Turbo Pascal Programs

PwrDem1a
Function DEMonstrates the powering algorithm.

Syntax pwrdem1a [a k m]

Restrictions |a| < 1018 , 0 ≤ k < 1018 , 0 < m < 1018

Algorithm See the description given for the program Power.

See also Power, PwrDem1b, PwrDem2

PwrDem1b
Function An alternative DEMonstration of the powering algorithm.

Syntax pwrdem1b [a k m]

Restrictions |a| < 1018 , 0 ≤ k < 1018 , 0 < m < 1018

Algorithm See the description given for the program Power.

See also Power, PwrDem1a, PwrDem2

PwrDem2
Function DEMonstrates an alternative powering algorithm.

Syntax pwrdem2 [a k m]

Restrictions |a| < 1018 , 0 ≤ k < 1018 , 0 < m < 1018

Algorithm A sequence of powers of a is generated, in which the binary expansions
of the exponents form initial segments of the binary expansion of k . For
example, if k = 10111 in binary, then (with all exponents written in bi-
nary) we start with a1 , square to form a10 , square again to form a100 ,
multiply by a to form a101 , square this to form a1010 , multiply by a to
form a1011 , square this to form a10110 , and finally multiply by a to form
a10111 . Of course all multiplications are carried out modulo m . In the
original method used by the program Power, the binary expansions of
the exponents form terminal segments of the binary expansion of k . The
number of multiplications is exactly the same in the two methods, but
this alternative method has an advantage in situations in which multipli-
cation by a is fast for some reason. For example, in powering a matrix
A , multiplication by A is fast if A is sparse. Similarly, in computing
P (x)k , multiplication by P (x) is fast if P (x) has few monomial terms.
The repeated doubling from the top down seen here is also appropriate
to the calculation of solutions of linear recurrences.

Reference Guide to Turbo Pascal Programs 91

See also Power, PwrDem1a, PwrDem1b, LucasDem

QFormTab
Function Generates a TABle of all reduced binary Quadratic FORMs f(x, y) =

ax2, bxy + cy2 of given discriminant. These forms are reduced only in
the sense defined in §3.5 of NZM. Hence if d > 0 then the reduced forms
are not necessarily inequivalent. For each form, the content (a, b, c) is
calculated.

Syntax qformtab

Commands PgUp Display the preceding 20 rows
PgDn Display the next 20 rows
d Choose a new discriminant
P Print the first 600 lines of the table

Esc Escape from the environment

Restrictions |d| < 106 , at most 5000 forms are displayed

Algorithm Detailed search for all triples satisfying the definition. Thus the running
time is essentially linear in |d| . This program could run for |d| up to
109 , but the stricter limit is imposed to avoid excessive running times.
For faster methods, see the discussion of the program ClaNoTab.

See also ClaNoTab, Reduce

Rat
Function Finds the RATional number a/q with least q such that the initial deci-

mal digits of a/q coincide with those of a given real number x .

Syntax rat [x]

Restrictions |a| ≤ 1018 , 1 ≤ q ≤ 1018

Algorithm Suppose that k decimal digits of x are given after the decimal point.
Put δ = 0.5 · 10−k . We want to find a/q with q minimal such that
|x− a/q| ≤ δ . By the continued fraction algorithm the least i is found
such that |x− hi/ki| ≤ δ . Then the desired rational number is given by
a = chi−1 + hi−2 , q = cki−1 + ki−2 where c is the least positive integer
such that a/q lies in the specified interval. Since this inequality holds
when c = ai , it suffices to search the interval [1, ai] .

Reduce
Function REDUCEs a binary quadratic form f(x, y) = ax2+bxy+cy2 . If the three

coefficients are given on the command line, then a reduced form g(x, y)

92 Reference Guide to Turbo Pascal Programs

is found, with g equivalent to f . The discriminant d of these forms is
also reported. A proper representation of a by g is also noted, and then
the program terminates. If the coefficients are not given on the command
line, then an environment for manipulating forms is entered. When a
form is being reduced in this environment, a chain of equivalences is
displayed, along with the matrix M that gives the equivalence, and the
operation S or Tm that was applied to derive the new form from that in

the preceding row of the table. Here S =
[

0 1
−1 0

]
and T =

[
1 1
0 1

]
.

The user also has the option of applying the operations S , T , and T−1 ,
one at a time. The table will hold up to 500 forms.

In the case that d > 0, the form is reduced only to the extent that
|a| < b ≤ |a| < |a| or 0 ≤ b ≤ |a| = |c| , and consequently two reduced
forms may be equivalent.

Syntax reduce [a b c]

Restrictions |a| < 1018 , |b| < 1018 , |c| < 1018

Commands PgUp Display the preceding 6 rows
PgDn Display the next 6 rows
a Enter a new coefficient a
b Enter a new coefficient b
c Enter a new coefficient c
R Reduce the form at the bottom of the table
S Apply the transformation S
T Apply the transformation T
I Apply the transformation T−1

M Toggle between displaying M :g → f and M :f → g
P Print the table

Esc Escape from the environment

See also ClaNoTab, QFormTab

Rho
Function Factors a given composite integer n by using Pollard’s RHO method.

This program should only be applied to numbers that are already known
to be composite; if it is applied to a prime number then it will run end-
lessly without reaching any conclusion. The program can be interrupted
by touching any key on the keyboard.

Syntax rho [n [c]] If n is specified on the command line but not c , then c = 1
by default.

Restrictions 1 < n < 1018 , |c| < 1018

Reference Guide to Turbo Pascal Programs 93

Algorithm Let u0 = 0, and for i ≥ 0 let ui+1 = u2
i + c . The ui are calculated

modulo n , and for each i the quantity (u2i−ui, n) is determined, in the
hope of finding a proper divisor of n . The numbers ui are not stored:
At any one time only ui and u2i are known. If a proper divisor is found,
it is not necessarily prime, and if it is prime it is not necessarily the least
prime divisor of n . Various values of c may be used, but c = 0 and
c = −2 should be avoided.

See also RhoDem, P-1, P-1Dem, Factor

RhoDem
Function DEMonstrates the Pollard RHO factoring scheme.

Syntax rhodem [n]

Restrictions 1 < n < 1018 , |c| < 1018

Algorithm See description given for the program Rho.

See also Rho, P-1, P-1Dem, Fac

RSA
Function Provides an environment for encrypting messages by means of the RSA

method. The encrypting history is displayed.

Syntax rsa

Commands B Set the size of the blocks
E Encode
P Print the data
R Enter a message as a sequence of residue classes
T Enter a message in text form
V Choose variables: modulus m , exponent k , etc.

Esc Escape from the environment

Restrictions The block size must lie between 1 and 17, the text must consist of at
most 80 characters, 0 < k < m < 1018

Algorithm Each residue class a (mod m) is replaced by b ≡ ak (mod m). To
decode, replace b by bk

′
(mod m) where 0 < k′ < m and kk′ ≡ 1

(mod φ(m)).

SimLinDE
Function Gives a complete parametric representation of the solutions to a system

of SIMultaneous LINear Diophantine Equations Ax = b . The user may
request that the calculations be displayed.

94 Reference Guide to Turbo Pascal Programs

Syntax simlinde

Restrictions A is m×n where 1 ≤ m ≤ 10, 1 ≤ n ≤ 10, all numbers occurring must
have absolute value not exceeding 1018

Algorithm Row operations and changes of variable are performed until the system
is in diagonal form. The full Smith normal form is not reached. This
method is prone to overflow. The program as written makes no special
effort to avoid overflow, but reports when it has occurred.

SlowGCD
Function Times the calculation of the greatest common divisor of two numbers b

and c , when only the definition is used. The only purpose in this is to
provide a comparison with FastGCD.

Syntax slowgcd

Restrictions 1 ≤ b < 109 , 1 ≤ c < 109

Algorithm For each d , 1 ≤ d ≤ min(|b|, |c|), trial divisions are made to determine
whether d|b and d|c . A record is kept of the largest such d found.
Since the running time is essentially linear in min(|b|, |c|), only small
arguments should be used.

See also FastGCD, GCD

SPsP
Function Executes the Strong PseudoPrime test base a to the number m . This

provides a rigorous proof of compositeness. If m survives such a test then
it is not necessarily prime, but it is called a “probable prime” because
pseudoprimes (i.e., composite probable primes) seem to form a sparse
set.

Syntax spsp [[a] m] If m is specified on the command line, but not a , then by
default a = 2.

Restrictions |a| < 1018 , 2 < m < 1018

Algorithm The strong pseudoprime test, as invented by John Selfridge and others.
For a full description see NZM, p. 78.

See also SPsPDem, ProveP

SPsPDem
Function DEMonstrates the Strong PSeudoPrime test.

Reference Guide to Turbo Pascal Programs 95

Syntax spsp [[a] m] If m is specified on the command line, but not a , then by
default a = 2.

Restrictions |a| < 1018 , 2 < m < 1018

See also SPsP, ProveP

SqrtDem
Function DEMonstrates the calculation executed by the program SqrtModP.

Syntax sqrtdem [a p]

Restrictions |a| < 1018 , 2 ≤ p < 1018

Algorithm See the description given for the program SqrtModP

See also SqrtModP

SqrtModP
Function Calculates the SQuareRooT Modulo a given Prime number p . If the

congruence x2 ≡ a (mod p) has a solution, then the unique solution x
such that 0 ≤ x ≤ p/2 is returned.

Syntax sqrtmodp [a p]

Restrictions |a| ≤ 1018 , 2 ≤ p ≤ 1018

Algorithm Uses the RESSOL algorithm of Dan Shanks. This is described in §2.9 of
NZM. A different method, which depends on properties of the Lucas se-
quences, has been given by D. H. Lehmer, Computer technology applied
to the theory of numbers, Studies in Number Theory, W. J. LeVeque,
ed., Math. Assoc. Amer., Washington, 1969, pp. 117–151.

See also SqrtDem

Comments This program provides a user interface for a function of the same name
in the unit NoThy. To see how the algorithm is implemented, inspect
the file nothy.pas.

SumsPwrs
Function Finds all representations of n as a sum of s k -th powers, and counts

them in various ways.

Syntax sumspwrs [n s k]

Restrictions 1 ≤ n < 1011 , 2 ≤ s ≤ 75, 2 ≤ k ≤ 10

96 Reference Guide to Turbo Pascal Programs

Algorithm After s − 1 summands have been chosen, a test is made as to whether
the remainder is a k -th power. Summands are kept in monotonic order;
the multiplicity is recovered by computing the appropriate multinomial
coefficient. In some cases, such as sums of two squares, much faster
methods exist for finding all representations.

See also Wrg1Tab, Wrg2Tab, WrgStTab, WrgCnTab

Wrg1Tab
Function Creates a TABle of the number r(n) of representations of n =

∑s
i=1 x

s
i

as a sum of s k -th powers, as in WARing’s problem. If k > 2 then the
xi are non-negative, but for k = 2 the xi are arbitrary integers.

Syntax wrg1tab

Commands PgUp Move up
PgDn Move down
s Set s , the number of summands
k Set k , the exponent
N Start the table at 10n
p Print the table

Esc Escape from the environment

Restrictions 1 ≤ s ≤ 75, 2 ≤ k ≤ 10, 1 ≤ n ≤ 1011

Algorithm Search for representations, with summands in monotonic order. The
multiplicity of a representation is recovered by multiplying by the ap-
propriate multinomial coefficient.

See also SumsPwrs, Wrg2Tab, WrgStTab, WrgCnTab

Wrg2Tab
Function Creates a TABle of the least number s of k -th powers required to rep-

resent n , in connection with WARing’s problem.

Syntax wrg2tab

Commands PgUp Move up
PgDn Move down
k Set k , the exponent
N Start the table at 10n
p Print the table

Esc Escape from the environment

Restrictions 2 ≤ k ≤ 10, 1 ≤ n ≤ 104

Reference Guide to Turbo Pascal Programs 97

Algorithm For s ≤ k , the numbers represented are found by allowing a k -tuple
of variables run over all possible values, with coordinates in monotonic
order. For s > k , all possible k -th powers are added to numbers already
represented, until more than half the numbers have been represented.
Then all possible k -th powers are subtracted from numbers not repre-
sented.

See also SumsPwrs, Wrg1Tab, Wrg2Tab, WrgCnTab

WrgCnTab
Function Creates a TABle of the number of solutions of the congruence

∑s
i=1 x

k
i ≡

n (mod m), in connection with WARing’s problem.

Syntax wrgcntab

Commands PgUp Move up
PgDn Move down
n First line displayed is n
m Set the modulus m
p Print the table

Esc Escape from the environment

Restrictions 1 ≤ s ≤ 75, 2 ≤ k ≤ 10, 1 ≤ m < 5000

Algorithm First a list of all k -th power residues r is constructed, with the num-
ber of solutions of xk ≡ r (mod m) is recorded. Summands run over
monotonically ordered residues. To recover the multiplicity of a repre-
sentation, one must multiply by the appropriate multinomial coefficient
and by the multiplicities of the summands.

See also SumsPwrs, Wrg1Tab, Wrg2Tab, WrgStTab

98 Reference Guide to Turbo Pascal Programs

Turbo Pascal
Programming Resources

A collection of basic routines are provided for use in more advanced programs. These
routines are accessed in one of two ways. First, there are files with the extension .i that
may be included in another program. For example, to measure the running time of a
program you may type {$I timer.i }. (The space after the .i is essential here.) The
effect will be the same as if the text of the file timer.i had been pasted into your program
at this point. Second, a library of 17 number-theoretic routines is provided in the Turbo
Pascal unit nothy.tpu. This is a compiled module that the compiler will use when your
program is compiled. The source code for this unit is in the file nothy.pas. To invoke this
unit, the initial lines of your program should include commands of the following sort:

program TwoSquares; {Use the method of Problem 6 on p. 333 to
write a prime p as a sum of two squares}

{$N+,E+}
uses nothy;

Most of the routines in NoThy accept integers as variables of type comp, with a size up to
1018 . This type is available only after the compiler directive {$N+} has been given. Such
variables are calculated on the arithmetic coprocessor, in floating point. If no coprocessor
is found, then the program will crash, unless the compiler directive {$E+} has also been
given, in which case the numerical work of the coprocessor will be emulated in software.

Canonic procedure NoThy
Function Calculates the canonical factorization of an integer.

Declaration canonic(n: comp; var k: integer; var p: primes; var m:
multiplicity; var Prog: Boolean)

Remarks This procedure uses two variable types defined within the NoThy unit:
primes = array[1..15] of comp; multiplicity = array[1..15] of integer. k
is the number of distinct primes dividing n ; these primes are stored, in
increasing order, in the array p. The multiplicity to which these primes
divide n is recorded in the corresponding location in the array m. If Prog

Turbo Pascal Programming Resources 99

= True then the progress in computing the factorization is reported to
the screen. Since the underlying method is trial division, performance
will be slow whenever n has a very large prime factor. In such a case,
execution may be interrupted by typing any key.

Restrictions 1 ≤ n ≤ 1018

Carmichael function NoThy
Function Computes the Carmichael function of n . That is, the least positive

integer c such that ac ≡ 1 (mod n) whenever (a, n) = 1.

Declaration carmichael(n: comp)

Result type comp

Remarks Since n is factored by trial division, performance will be slow if n has a
very large prime factor. In such a case, the execution may be interrupted
by typing any key.

Restrictions 1 ≤ n ≤ 1018

See also Phi

Condition function NoThy
Function Given a and m , the number b is returned where b ≡ a (mod m) and

0 ≤ b < m .

Declaration condition(a, m: comp)

Result type comp

Restrictions |a| ≤ 1018 , 1 ≤ m ≤ 1018

CRThm procedure NoThy
Function Determines the intersection of two given arithmetic progressions.

Declaration CRThm(a1, m1, a2, m2: comp; var a, m: comp)

Remarks If the intersection is empty then the value m = 0 is returned.

Restrictions |ai| ≤ 1018 , 1 ≤ mi ≤ 1018

DetModM function det.i
Function Calculates the determinant of an n×n integral matrix A = [aij] modulo

m .

100 Turbo Pascal Programming Resources

Declaration det(A: matrix; n: integer; m: comp)

Result type comp

Remarks Before this function is called, the following variable type must be defined:
matrix = array[1..9] of array[1..9] of comp.

Restrictions |aij | ≤ 1018 , 1 ≤ n ≤ 9, 1 ≤ m ≤ 1018

GCD function NoThy
Function Calculates the greatest common divisor of two given integers b and c .

Declaration gcd(b, c: comp)

Result type comp

Remarks The gcd is undefined when b = c = 0.

Restrictions |b| ≤ 1018 , |c| ≤ 1018

GetInput function GetInput.i
Function Moves the cursor to a specified location (x, y), and prompts the user for

an integral input. On the line just below, a comment is provided, which
typically concerns the range in which the input must lie. The input is
accepted only when it lies in a specified interval [a, b] .

Declaration getinput(x, y: integer; prompt, comm : string; a, b : comp)

Result type comp

Remarks This function may be modified for more specialized tasks, as is the case
with the function GetDisc found in the program QFormTab. Any pro-
gram using this function must declare the unit CRT in the uses state-
ment.

Restrictions 1 ≤ x ≤ 80, 1 ≤ y ≤ 25, |a| ≤ 1018 , |b| ≤ 1018

Examples See the files factor.pas, phi.pas.

GetNextP function NoThy
Function Given an integer x , finds the least prime p such that p > x .

Declaration getnextp(x: longint)

Result type longint

Remarks If x < 0 or x > 109 then the value 0 is returned.

Turbo Pascal Programming Resources 101

Restrictions 1 ≤ x ≤ 109

Jacobi function NoThy
Function Calculates the Jacobi symbol

(
P
Q

)
.

Declaration jacobi(p, q: comp)

Result type integer

Restrictions |P | ≤ 1018 , 1 ≤ Q ≤ 1018 , Q odd.

LinCon procedure NoThy
Function Solves the linear congruence a1x ≡ a0 (mod m). If solutions exist then

they form an arithmetic progression, x ≡ a (mod m1).

Declaration lincon(a1, a0, m: comp; var a, m1: comp)

Remarks If (a1,m) 6 |a0 then the congruence has no solution, and the values a =
(a1,m), m1 = 0 are returned.

Restrictions |ai| ≤ 1018 , 1 ≤ m ≤ 1018

LucasU function NoThy
Function Computes Un (mod m). Here Un is the Lucas sequence with parameters

a and b , defined by the recurrence Un+1 = aUn + bUn−1 , with initial
conditions U0 = 0, U1 = 1. If a = b = 1 then these are the Fibonacci
numbers Fn .

Declaration lucasu(n, a, b, m: comp)

Result type comp

Restrictions 0 ≤ n ≤ 1018 , |a| ≤ 1018 , |b| ≤ 1018 , 1 ≤ m ≤ 1018

See also LucasV

LucasV function NoThy
Function Computes Vn (mod m). Here Vn is the Lucas sequence with parameters

a and b , defined by the recurrence Vn+1 = aVn + bVn−1 , with initial
conditions V0 = 0, V1 = 1. If a = b = 1 then these are the Lucas
numbers Ln .

Declaration lucasv(n, a, b, m: comp)

102 Turbo Pascal Programming Resources

Result type comp

Restrictions 0 ≤ n ≤ 1018 , |a| ≤ 1018 , |b| ≤ 1018 , 1 ≤ m ≤ 1018

See also LucasU

Mult function NoThy
Function Given a , b , and m , returns the number c such that c ≡ ab (mod m)

and 0 ≤ c < m .

Declaration mult(a, b, m: comp)

Result type comp

Remarks This allows congruence arithmetic for m up to 1018 without need for
multiple precision arithmetic.

Restrictions |a| ≤ 1018 , |b| ≤ 1018 , 1 ≤ m ≤ 1018

Order function NoThy
Function Given a , m , and c such that ac ≡ 1 (mod m), the least positive integer

h such that ah ≡ 1 (mod m) is returned.

Declaration order(a, m, c: comp)

Result type comp

Remarks If (a,m) > 1 then the value 0 is returned. If (a,m) = 1 but ac 6≡ 1
(mod m) then an error message is printed and the program halts. Since
c is factored by trial division, performance will be slow if c has a very
large prime factor. In such a case, execution may be interrupted by
typing any key.

Restrictions |a| ≤ 1018 , 1 ≤ m ≤ 1018 , 1 ≤ c ≤ 1018

See also PrimRoot

Phi function NoThy
Function Computes the Euler phi function φ(n).

Declaration phi(n: comp)

Result type comp

Remarks Since n is factored by trial division, performance will be slow if n has
a very large prime factor. In such a case, execution may be interrupted
by typing any key.

Turbo Pascal Programming Resources 103

Restrictions 1 ≤ n ≤ 1018

See also Carmichael

Power function NoThy
Function Given a , k , and m , returns c such that c ≡ ak (mod m) and 0 ≤ c <

m .

Declaration power(a, k, m: comp)

Result type comp

Restrictions |a| ≤ 1018 , 0 ≤ k ≤ 1018 , 1 ≤ m ≤ 1018

PrimRoot function NoThy
Function Given an integer a and a prime number p , returns the least primitive

root g of p such that g > a .

Declaration primroot(p, a: comp)

Result type comp

Remarks Since p − 1 is factored by trial division, performance will be slow if
p − 1 has a very large prime factor. In such a case, execution may be
interrupted by typing any key.

Restrictions |a| ≤ 1018 , 2 ≤ p < 1018

ReadTimer procedure Timer.i
Function Give the elapsed time since the timer was set.

Declaration readtimer

Remarks The elapsed time is stored in the variable TimerString, which is defined
to be of type string[35]. The timer must be set before it can be read, by
using the procedure SetTimer. Any program employing the timer must
declare the unit DOS in the uses statement.

Restrictions The TimerString records only hours, minutes and seconds. If a program
runs for more than 24 hours, the number of days must be added to the
stated time.

See also SetTimer

Examples See the files slowgcd.pas, factor.pas.

104 Turbo Pascal Programming Resources

SetTimer procedure Timer.i
Function Sets the timer.

Declaration settimer

See also ReadTimer

SPsP function NoThy
Function Applies the strong pseudoprime test base a to m .

Declaration spsp(a, m: comp)

Result type Boolean

Remarks If m is proved to be composite then the value False is returned; otherwise
the calculation is consistent with the hypothesis that m is prime, and
the value True is returned.

Restrictions |a| ≤ 1018 , 2 ≤ m ≤ 1018

SqrtModP function NoThy
Function Given an integer a and a prime number p , returns the number x such

that x2 ≡ a (mod p), 0 ≤ x ≤ p/2.

Declaration sqrtmodp(a, p: comp)

Result type comp

Remarks If p is found to be composite, or if a is a quadratic nonresidue of p ,
then an error message is printed and the program halts.

Restrictions |a| ≤ 1018 , 2 ≤ p ≤ 1018

Turbo Pascal Programming Resources 105

106 Turbo Pascal Programming Resources

