McGill University
Math 325B: Differential Equations
Notes for Lecture 23
Text: Ch. 8

In this lecture we investigate series solutions for the general linear DE
ao(@)y™ + a1 (@)y "V + - + an(x)y = b(a),

where the functions aq,as, ... ,an,b are analytic at x = xg. If ag(xg) # 0 the point © = ¢ is called
an ordinary point of the DE. In this case, the solutions are analytic at x = x( since the normalized
DE

y™ +pi(@)y" Y 4 4 pa(2)y = g(x),

where p;(z) = a;(x)/ao(x), q(x) = b(x)/ao(x), has coefficient functions which are analytic at © = xo.
If ag(zp) = 0, the point & = xq is said to be a singular point for the DE. If k is the multiplicity
of the zero of ap(z) at x = x¢ and the multiplicities of the other coefficient functions at = = xg is
as big then, on cancelling the common factor (z — x¢)* for x # o, the DE obtained holds even for
x = xg by continuity, has analytic coefficient functions at * = xy and = = xg is an ordinary point.
In this case the singularity is said to be removable. For example, the DE zy” 4 sin(z)y’ + 2y =0
has a removable singularity at x = 0.

In general, the solution of a linear DE in a neighbourhood of a singularity is extremely difficult.
However, there is an important special case where this can be done. For simplicity, we treat the
case of the general second order homogeneous DE

ao(2)y" + a1 (x)y +ax(x)y =0, (x> z9),

with a singular point at x = x¢. Without loss of generality we can, after possibly a change of variable
x — xg = t, assume that xg = 0. We say that x = 0 is a regular singular point if the normalized DE

y' +p)y +q(x)y=0, (z>0),

is such that zp(z) and z%q(z) are analytic at z = 0. A necessary and sufficient condition for this is
that

lim zp(z) = pp, lim x2q(:1c) =q
0 x—0

€Tr—
exist and are finite. In this case
ap(x) =po+pix+-+ppa” oo, 2Pq(x) =g+ @r -+ g’ + -

and the given DE has the same solutions as the DE

2*y" + z(zp(x))y + 2q(z)y = 0.

This DE is an Euler DE if zp(x) = po, 2%¢(x) = qo. This suggests that we should look for solutions

of the form
o0 o0
Y= xr(z anxn) = Z anxn-‘rrv
n=0 n=0

with ag # 0. Substituting this in the DE gives

[e ) oo

Z(n +r)n+r—Dayz"t" + (Z p”a:"”)(Z(n +1r)a,z™ ") + (Z q”xn)(z ap,z" ") =0
n=0 =0 n=0

n=0 n=0 n



which, on expansion and simplification, becomes
aoF(r)z" + Z (n+7r)an + (n 47— 1D)p1 4+ q1)an—1 + -+ (rpn + qn)ag)z™ ™" =0,

where F(r) = r(r — 1) 4+ por + go. Equating coeflicients to zero, we get
r(r—1)+por+qo =0,
the indicial equation, and
Fn4+r)a,=—((n+r—1p1+q)an-1—— (rpn + qn)ao

for n > 1.If the roots r1,ry of the indicial equation don’t differ by an integer, the above recursive
equation determines a, uniquely for r = r; and r = ro. If a,(r;) is the solution for r = r; and
ag = 1, we obtain the linearly independent solutions

oo oo
y1 =2 (Z an(ry)z™), yo = x”(z an(re)x™).
n=0 n=0

It can be shown that the radius of convergence of the infinite series is the distance to the singularity
of the DE nearest to the singularity z = 0. If ry —ro = N > 0, the above recursion equations can
be solved for » = r; as above to give a solution

v =" (Y an(r)e

n=0

A second linearly independent solution can then be found by reduction of order. However, the
series calculations can be quite involved and a simpler method exists which is based on solving the
recursion equation for a, as a ratio of polynomials. This can always be done since F'(n + r) is not
the zero polynomial for any n > 0. If a,(r) is the solution with ag(r) =1 and we let

y=y(o,r) =2"(> an(ra™,
n=0

we have
2y + 2’p(a)y + *q(x)y = (r — r1)(r — ro)a”

2//

If r; = 79, we have x2y” + 22p(x)y’ + 2%q(x)y = (r — r1)%2". Differentiating this equation with

respect to r, we get

dy dy dy
207\ 2 AV 2 9 _ _ _ 2.7
LY+ (@) (LY +Pa(x) 5L = 2(r = 1) + (r = P In(a).
Setting r = 11, we find that
a o0 o0
Y2 = 811{ x,ry) = 2" Zan (r)m () + 2™ nz::Oa ! (r)z™ = yy In(z) + 2™ ;a;(rl)m",

where a,(r) is the derivative of a,(r) with respect to r, is a second linearly independent solution.
Since this solution is unbounded as x — 0, any solution of the given DE which is bounded as x — 0
must be a scalar multiple of y;.



If ri —ro =N >0, and we let z(z,r) = (r — ro)y(z,r), we have

2?2+ 2?p(a)? + 2%q(x)z = (r — 1) (r —r2)%2”
so that
xz(%)" + x2p(w)(%)' + m2q(x)% = (r—r2)((r —r2) +2(r —r1))z" + (r —r1)(r — r2)*a" In(z).

Setting r = 79, we see that yo = %(m, r9) is a solution of the given DE. It can be shown that

y2 = ax’ (z an(r1)z™) In(x) + 2 (Z b (r2)a™) = ayy In(z) + 2™ (Z bl (ra)a™),
n=0 n=0 n=0

where b, (r) = (r — r2)an(r) and a = by (r2). This gives a second linearly independent solution.
The above method is due to Frobenius and is called the Frobenius method.

Example 1. The DE 2zy” + ¢ + 22y = 0 has a regular singular point at = 0 since ap(z) = 1/2
and 22¢(x) = 2%. The indicial equation is

1 1
r(r—1)+§r:r(r— 5)

The roots are ry = 1/2, 7o = 0 which do not differ by an integer. We have

(r+ 1)+ )ar =0,

1
(n+r)(n+r— E)an = —anp_o forn>2

so that a, = —2an_2/(r +n)(2r +2n — 1) for n > 2. Hence 0 = a1 = a3 = - - - agp+1 for n > 0 and
2 2 22
ag = ———————ag, a4 = — as = ag.
2T+ +3) " T )2+ 2+ a2+ 3)2r )
It follows by induction that
2'ﬂ

agyn = (_1)n

rr2)(r+4)- (rt2n)(2r+3)2r +4)--2r+4n 1)

Setting, r = 1/2, 0, ag = 1, we get
oo

& (< - Co
yl—ﬁ7§5.9...<4n+1)n!’ y2*2(3-7~-~-(4n—1))”!'

n=0

The infinite series have an infinite radius of convergence since x = 0 is the only singular point of the
DE.

Example 2. The DE zy” + ¢y’ + y = 0 has a regular singular point at z = 0 with zp(z) = 1,
22q(z) = x. The indicial equation is

rir—1)+r=7r2=0.



This equation has only one root = 0. The recursion equation is
(n +7’)2an =—an_1, n>1.

The solution with ag = 1 is

1
(r+12(r+2)? (r+n)*

setting r = 0 gives the solution

Y1 = nz:;)(_l)n (Z|)2 .

Taking the derivative of a,, (1) with respect to  we get, using a;,(r) = a,(r) 7 In(a,(r)) (logarithmic
differentiation),we get

2 2
/ —
G = (gt g e ()
so that . )
= + = + e + =
I _o(_1\n 1 2 n
Therefore a second linearly independent solution is
[e’) 1 1 1
= _l’_ = + ce + =
— n 1 2 n ,.n
y2 = y1In(z) + 2;:1(*1) ST} PR

The above series converge for all z. Any bounded solution of the given DE must be a scalar multiple
of Y.



