McGill University
Math 325B: Differential Equations
Notes for Lecture 21
Text: Ch. 7

In this lecture we will show how to solve DE’s of the form P(D)(y) = f with f piecewise
continuous using Laplace transforms. The example given in the first lecture on Laplace transforms
was just such a problem and we will solve this problem a second time using Laplace transforms. The
justification for this method is the following theorem.

Theorem. If pi(t),pa(t),...,pn(t) are continuous for ¢ > 0 and f(t) is piecewise continuous for
t > 0 there exists a unique function y = y(t) such that (i) y(t),y'(t), ...,y D (t) are continuous for
t >0, (ii) y(0) = ¢1,%'(0) = ca,...,y " (0) = ¢, and (iii) For those ¢ # the points of discontinuity
of f(t), the function y = y(¢) satisfies the differential equation

Y™ i)y 4 )y = f(1).

Proof. Let ap = 0 < a1 < ag,... < a,, < o0 be a sequence of points with f(¢) continuous on
each interval a; < t < a;41 with ¢ < m and on the interval a,, < t. For 0 < i < m, we let f;(¢)
be the function on a; < ¢t < a;41 which is equal to f(t) for ¢t # a;,a;41 and fi(a;) = f(a;i+),
filaiz1) = f(aip1—). Let fin(t) be the function on a,, < ¢ which is equal to f(t) for a, <t and
equal to f(am+) at a,,. We now define inductively a sequence of initial value problems P; as follows.
The problem P, is the initial value problem

Y™+ pi )y - pa(Wy = fo(t), y(0)=c1,y(0) =coy...,y" ) =,

This problem has a unique solution y = yo(t) on ap < t < a;. The problem P; has differential
equation
y " Oy ety = A1), (0 << a)

with initial conditions y(a1) = yo(a1),v'(a1) = yhlar), ...,y V(a1) = y(()"_l)(al). This problem

has a unique solution y = y1(t) on the interval a; <t < ag. We proceed in the same way step by
step over each interval a; <t < a,;41 defining an initial value problem P; having differential equation

y™ iy o+ pa(Dy = fill), (@ <8< aiga)
with initial conditions y(a;) = yi_1(as), ¥ (a;) = yi_1(as), ...,y D(a;) = ygﬁfl)(ai) where y;_1(t)
is the solution of the problem P;_;. The problem P,, is the initial value problem

y(n) +p1(t)y(n71) 4 +pn(t)y = fn(t)a (am < t),
Y(am) = Ym-1(am), ¥ (@m) = Vo1 (@m)s -,y D(ay) = yr(::ll)(am). This problem has a unique

solution y = y,,,(t) on a,, < t. The function y = y(t) defined by y(t) = y;(¢t) for a; <t < a;41 and
y(t) = ym(t) for a,, <t is the required solution.

In order to work with piecewise continuous functions we introduce the unit step function

u(t){ 0, t<O0,

1, 0<t



and ug(t) = u(t — a), its translate by a > 0. We have

0 t
ua<t>={ Ctse

1, a<t.
If f(t) is the piecewise continuous function defined by

fO(t)a 0§t<0,1,
fit), a1 <t <ao,

ft) =
.fm(t), am < 1.
then
f@) = fo(®) + (f1(8) = fo(t))ua, () + (fo(t) = f1(8))uay () + - - + (fm () = frn1(F))tha,, (2)-
To compute the Laplace transform of this function we need the following formula
L{ua(t)f()} = e”L{f(t + a)}.

For example, taking f(t) = 1, we get L{u,(t)} = e *°/s. This formula is proved using the
definition of the Laplace transform and a change of variable as follows

Clualf @) = | " ety (1) f (1)t
= /OO e St f(t)dt

a

:/ s f (¢ 4 a)dt
0

= e*as/ e " f(t + a)dt.
0
This also yields a formula for the inverse Laplace transform

L7He ™ L{f()}} = ua(t) f(t — a).

For example, £L71{e™/s} = u,(t).

With this machinery we can now solve the initial value problem

0, 0<t<10,
y' +y=1{ 1, 10<t<10+2m,
0, 10+2r<t,

y(0) =y'(0) = 0.

This problem can be written

Y +y = uo(t) — wior2«(t), y(0) =y'(0) =0.



Taking Laplace transforms, we get

2 L)Y (s) = — -
(2 + ¥ () = -
where Y(s) = L{y(t)}. Solving for Y (s), we get
—10s —(10+27)s
Y(s)=— 5 — -
s(s2+1)  s(s2+1)
1 s 1 s
_ ,—10s/—= _ —(1042m)s = 2
‘ (s 82—|—1) N (s 52—}—1)'

Taking inverse Laplace transforms, we get
y(t) = uio(t)(1 — cos(t — 10)) — uyg42x (t)(1 — cos(t — 10 — 2m))
0, 0<t<10,
= 1 —cos(t—10), 10 <t < 10+ 2m,
0, 10+2x7 <t.

For a second example, consider the initial value problem
0, 0<t<m/2
y' +y= sint, 7w/2<t<m,
0, wm<t,
y(0) =y'(0) = 0.
Here we have 3" +y = ur/2(t) sint — ur(t)sint. Taking Laplace transforms, we get
(s> +1)2Y (s) = e ™/2L{sin(t + 7/2)} — e ™ L{sin(t + 7)}
= e ™/2L{cost} — e T L{—sint}

B 86—71'3/2 N e~ TS
T2 1 241
—ms/2 —7s
Se e
Y =
B GT112  (Z+1)°
Using the fact that
1 S _ 1 . 1 1 B 1 1
L {m}—itsmt, L {W}—ismt—itcost,

we get

y(t) = Euw/z(t —7/2)sin(t — w/2) + %u,r(t)(sin(t —7) — (t —m)cos(t —m))

2
1 1
= —guﬂ./g(t) cost + guﬂ(t)(— sint + (t — m) cost)

0, 0<t<m/2,
—%cost, T/2<t<m,
—Lcost—Lsint+ (t—m)cost, w<t,



Convolution. If f(t),g(t) are piecewise continuous functions on [0, 00), their convolution is the
function f(¢) * g(t) defined by

F(t) * g(t) = / f(@)g(t — z) da = / £z — Dyg(t) da.

We leave it to the reader to show that f(¢)xg(t) = g(¢)*f(t) and (f(t)*g(t))xh(t) = f(t)*(g(t)*h(t)).
For example,

¢
sint * cost = / sinx cos(t — x) dx
0

1 t
=3 / (sint + sin(2x — t)) dx
0

1t't
= —tsint,
2

sint xsint = /—l—Ot sintsin(t — x) dx

¢
_1 / (cos(2x — t) — cost) dx
2 Jo

—1't 1t t
= 5 sin 5t oost.

The Laplace transform has the following important property

L{f(t) xg(®)} = L{f ()} L{g(t)}

so that
LTYF(5)Gs)} = L7HF (5)} + L7HG(s)}.

For example,

S 1 1

! =LY =5
{(s2+1)2} {32+152+1}
1
:sint*costzitsint,
1 1 1
R L G S R
£ {(52—|—1)2} {52+1s2+1}

1 1
=sintxsint = —sint — —tcost.
2 2
Another property of the Laplace transform is that, for a continuous function on [0, c0) we have

£ [ f@yasy = S0

This follows immediately from the fact that

d t
2 / f(@)dz = f(0).



For example, this can be used to solve the integral equation

ft) = /0 f(z)sin(t —z)dx + 1

by taking Laplace transforms. If F'(s) = L{f(t)}, we have

F(s) 1
F = —.
(s) 5241 + s
Solving for F(s), we get
1 1
F = — -
(5)=<+3

so that f(t) = 1+t2/2.



