McGill University
Math 325B: Differential Equations
Notes for Lecture 20
Text: Ch. 7

In this lecture we will show how to use Laplace transforms in solving differential equations.
Consider the initial value problem

y' +y +y=sin(t), y0)=1, y'(0)=—1.
If Y(s) = L{y(t)}, we have
L{y' (1)} = sY(s) —y(0) = sY(s) =1, L{y"()} = s*Y(s) — sy(0) — /' (0) = 5*Y(s) — 5 + 1.

Hence taking Laplace transforms of the DE, we get
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Using partial fractions we have
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Multiplying both sides by (s? + 1)(s® + s + 1) and collecting terms, we find
1=(A+C)s* +(B+C+ D)s*> + (A+C+ D)s+ B+ D.

Equating coefficients, we get A+ C =0, B+C+D =0, A+C+ D =0, B+ D =1, from which
weget A=B=1,C = -1, D =0 so that
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we obtain
y(t) = 2e~t/2 cos(x/g t/2) — cos(t).

As a second example, consider the system

dr _ —2x +
i Y,
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with the initial conditions z(0) = 1, y(0) = 2. Taking Laplace transforms the system becomes

sX(s)—1=-2X(s)+Y(s),
sY(s)—2=X(s)—2Y(s),

where X (s) = L{z(t)}, Y(s) = L{y(¢t)}. This linear system of equations for X (s), Y'(s) can be

(s+2)X(s)=Y(s) =

L
—X(s)+(s+2)Y(s) =2.

The determinant of the coefficient matrix is s2 +4s+3 = (s+1)(s + 3). Using Cramer’s rule we get
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The Laplace transform reduces the solution of differential equations to a partial fractions calcu-
lation. If F(s) = P(s)/Q(s) is a ratio of polynomials with the degree of P(s) less than the degree of
Q(s) then F(s) can be written as a sum of terms each of which corresponds to an irreducible factor
of Q(s). Each factor of Q(s) of the form s — a contributes a term of the form
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where r is the multiplicity of the factor s — a. If ¢,(s) = (s — a)"P(s)/Q(s), we have
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where qb((f) is the i-th derivative of ¢, with respect to s. This formula also holds if a is a complex

root of Q(s) and we have
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Each irreducible quadratic factor s> 4+ as + b contributes the terms
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where r is the degree of multiplicity of the factor s? + as + b. There are no simple formulas for the
constants A;, B; or for the inverse Laplace transforms of the functions
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For these reasons, the use of complex roots is preferable.

Example. Consider the initial value problem

Yy —y=tsin(t), y(0) =y'(0)=y"(0)=y"(0)=0.

Taking Laplace transforms and solving for Y = L{y}, we get
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Solving for Y, we get
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Partial fractions gives

A B C() Cl n CQ 60 61 62

Y:
s—1 s+l GoiP oiP T s—i T Grig G i s+d

where C; is the complex conjugate of C;. To compute the constants we need to use the functions
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P1(s) = m7 p-1(s) = m7 i(s) = m

We have A = ¢1(1) = 1/8, B = ¢_1(~1) = 1/8, Co = ¢3(i) = 1/8, C1 = &.(i) = 3i/16 and
Cy = ¢ (i)/2 = 1/8. It follows that
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Taking inverse Laplace transforms,
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