McGill University
Math 325B: Differential Equations
Notes for Lecture 2

Text: Sections 2.1, 2.2,2.3
In this lecture we will treat linear and separable first order ODE’s.

Linear Equations. The general first order linear ODE has the form
ao(z)y’ + ar(x)y = b(z)

where ag(), acx), b(z) are continuous functions of x on some interval I. To bring it to normal form
y' = f(z,y) we have to divide both sides of the equation by ag(x). This is possible only for those x
where ag(x) # 0. After possibly shrinking I we assume that ag(z) # 0 on I. So our equation has
the form (standard form)

Y+ plx)y = q(z)

with p(z) = a1(x)/ao(x) and ¢(z) = b(z)/ap(x), both continous on I. Solving for ¢y’ we get the
normal form for a linear first order ODE, namely

Y +p(x)y = q(z).

We now introduce the function,
() = of P

It has the property p'(x) = p(x)u(z) and p(z) # 0 for all . Hence our differential equation is

equivalent (has the same solutions) to the equation

p@)y' + u(@)p(z)y = p(@)q(z).
Since the left hand side of this equation is the derivative of pu(z)y, it can be written in the form

2 (u(a)y) = pla)a(z).

Integrating both sides, we get
p()y = [ ua(w)ite) + €
with C an arbitrary constant. Solving for y, we get
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as the general solution for the general linear first order ODE

Y +p(r)y = q(z).

The function pu is called an integrating factor for the given linear ODE. Note that for any pair
of scalars a,b with a in I, there is a unique scalar C such that y(a) = b. Geometrically, this means
that the solution curves y = y(x) are a family of non-intersecting curves which fill the region I x R.

Example 1: y' +y = x. This is a linear first order ODE in standard form with p(z) =1, ¢(z) = .
The integrating factor is
w(z) = el ¥ =¢”,



Hence, after multiplying both sides of our differential equation, we get

d T T
7 (€7y) = ze

which, after integrating both sides, yields
e”y:/xe‘”dx—l—C’:xe‘”—e”—i—C.

Hence the general solution is y =  — 14+ Ce™?. The solution satisfying the initial condition y(0) = 1
is y = — 1 + 2¢® and the solution satisfying y(0) =aisy=a — 1+ (a+ 1)e™=.

Example 2: zy’ — 2y = x3sin(xz). We bring this linear first order equation to standard form by
dividing by . We get

—2
y + —y = x?sin(x).
x

The integrating factor is
,U/(x) _ ef —2dz/z _ e—21n|x\ _ 1/(E2

After multiplying our DE in standard form by 1/x? and simplifying, we get

2 (y/a?) = sin)

from which y/2? = — cos(z) + C and hence y = —x? cos(x) + Cz?, which is the general solution of
the given ODE for z > 0 or x < 0 by continuity. Note that, if a # 0, there is a unique solution
satisfying y(a) = b for any constant b while all solutions satisfy the initial condition y(0) = 0. This
non-uniqueness is due to the fact the DE in normal form is not well behaved at = 0. However,
y = —x? cos(z) + Ca? is not the general solution of the given ODE since different C’s are possible
for x > 0 and z < 0 due to the fact that the one-sided derivatives at x = 0 are zero for all C. It is

the general solution if y if y” is required to exist at = = 0.

Separable Equations. The first order ODE y' = f(z,y) is said to be separable if f(z,y) can
be expressed as a product of a function of x times a function of y. The DE then has the form
y' = g(x)h(y) and, dividing both sides by h(y), it becomes

Of course this is not valid for those solutions y = ¢(z) at the points where ¢(x) = 0. Assuming the
continuity of g and h, we can integrate both sides of the equation to get

/hl(JZ//) dx = /g(x)dx +C.

This will in general give y implicitly in terms of z and one has to solve this implicit equation for y
to get y explicitly as a function of x.

Example 1: zy’ = y. Dividing both sides by zy, we get

dy _de
yi.’L'



which is equivalent to the given ODE when xy # 0. Solutions of the given ODE which cross the =
or y-axis may be lost by this procedure. Integrating both sides of the second ODE, we get

In |y| = In |z| + Cb.

Exponentiating, we get
In|z|+Co _ e1n|a:|6C0 _ ‘.’K|6CO.

gl = e
Removing the absolute values, we get y = Cz, where C' = +e“° which is also a solution of the given
ODE when x = 0. Since y = 0 is a solution of the given ODE by inspection, we see that y = Cz is
a solution of the given ODE for any constant C. This is the family of straight lines passing through
the origin with the exception of the x — awxis. There is no solution of the given ODE satisfying
y(0) = b with b # 0. Any non-zero solution y = y(z) must be y = Cz with C' # 0 for z > 0 and
x < 0, possibly with different C’s. However, different C’s is not possible as such a function would
not be differentiable at = 0. It follows that y = Cz is the general solution of the given ODE.

Example 2: (z+ 3)y’ =y — 1. By inspection, y = 1 is a solution. Dividing both sides of the given
DE by (y — 1)(z + 3) we get

Integrating both sides we get

Y dx
dz = C
/y—lx /96—!—3+ ’

from which we get In |y — 1| = In |z + 3|+ A. Thus |y — 1| = |z + 3| from which y — 1 = +e?(z + 3).
If we let C' = +e?, we get
y=14+C(z+3).

Since y = 1 was found to be a solution by inspection, we get the one-parameter family of solutions
y=1+C(z+3),

where C' can be any scalar. This is the family of straight lines passing through the point (—3,1)
with the exception of the line z = —3. Arguing as in the preceding example, the general solution of
the given ODE is y = 1 + C(x + 3).



