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Math 325B: Differential Equations

Notes for Lecture 2

Text: Sections 2.1, 2.2,2.3

In this lecture we will treat linear and separable first order ODE’s.

Linear Equations. The general first order linear ODE has the form

a0(x)y′ + a1(x)y = b(x)

where a0(x), a(x), b(x) are continuous functions of x on some interval I. To bring it to normal form
y′ = f(x, y) we have to divide both sides of the equation by a0(x). This is possible only for those x
where a0(x) 6= 0. After possibly shrinking I we assume that a0(x) 6= 0 on I. So our equation has
the form (standard form)

y′ + p(x)y = q(x)

with p(x) = a1(x)/a0(x) and q(x) = b(x)/a0(x), both continous on I. Solving for y′ we get the
normal form for a linear first order ODE, namely

y′ + p(x)y = q(x).

We now introduce the function,
µ(x) = e

R
p(x)dx

It has the property µ′(x) = p(x)µ(x) and µ(x) 6= 0 for all x. Hence our differential equation is
equivalent (has the same solutions) to the equation

µ(x)y′ + µ(x)p(x)y = µ(x)q(x).

Since the left hand side of this equation is the derivative of µ(x)y, it can be written in the form

d
dx

(µ(x)y) = µ(x)q(x).

Integrating both sides, we get

µ(x)y =
∫

µ(x)q(x)d(x) + C

with C an arbitrary constant. Solving for y, we get

y =
1

µ(x)

∫

µ(x)q(x)d(x) +
C

µ(x)

as the general solution for the general linear first order ODE

y′ + p(x)y = q(x).

The function µ is called an integrating factor for the given linear ODE. Note that for any pair
of scalars a, b with a in I, there is a unique scalar C such that y(a) = b. Geometrically, this means
that the solution curves y = y(x) are a family of non-intersecting curves which fill the region I ×R.

Example 1: y′ + y = x. This is a linear first order ODE in standard form with p(x) = 1, q(x) = x.
The integrating factor is

µ(x) = e
R

dx = ex.



Hence, after multiplying both sides of our differential equation, we get

d
dx

(exy) = xex

which, after integrating both sides, yields

exy =
∫

xexdx + C = xex − ex + C.

Hence the general solution is y = x−1+Ce−x. The solution satisfying the initial condition y(0) = 1
is y = x− 1 + 2ex and the solution satisfying y(0) = a is y = x− 1 + (a + 1)e−x.

Example 2: xy′ − 2y = x3 sin(x). We bring this linear first order equation to standard form by
dividing by x. We get

y′ +
−2
x

y = x2 sin(x).

The integrating factor is
µ(x) = e

R
−2dx/x = e−2 ln |x| = 1/x2.

After multiplying our DE in standard form by 1/x2 and simplifying, we get

d
dx

(y/x2) = sin(x)

from which y/x2 = − cos(x) + C and hence y = −x2 cos(x) + Cx2, which is the general solution of
the given ODE for x ≥ 0 or x ≤ 0 by continuity. Note that, if a 6= 0, there is a unique solution
satisfying y(a) = b for any constant b while all solutions satisfy the initial condition y(0) = 0. This
non-uniqueness is due to the fact the DE in normal form is not well behaved at x = 0. However,
y = −x2 cos(x) + Cx2 is not the general solution of the given ODE since different C ′s are possible
for x ≥ 0 and x ≤ 0 due to the fact that the one-sided derivatives at x = 0 are zero for all C. It is
the general solution if y if y′′ is required to exist at x = 0.

Separable Equations. The first order ODE y′ = f(x, y) is said to be separable if f(x, y) can
be expressed as a product of a function of x times a function of y. The DE then has the form
y′ = g(x)h(y) and, dividing both sides by h(y), it becomes

y′

h(y)
= g(x).

Of course this is not valid for those solutions y = φ(x) at the points where φ(x) = 0. Assuming the
continuity of g and h, we can integrate both sides of the equation to get

∫

y′

h(y)
dx =

∫

g(x)dx + C.

This will in general give y implicitly in terms of x and one has to solve this implicit equation for y
to get y explicitly as a function of x.

Example 1: xy′ = y. Dividing both sides by xy, we get

dy
y

=
dx
x



which is equivalent to the given ODE when xy 6= 0. Solutions of the given ODE which cross the x
or y-axis may be lost by this procedure. Integrating both sides of the second ODE, we get

ln |y| = ln |x|+ C0.

Exponentiating, we get
|y| = eln |y| = eln |x|+C0 = eln |x|eC0 = |x|eC0 .

Removing the absolute values, we get y = Cx, where C = ±eC0 which is also a solution of the given
ODE when x = 0. Since y = 0 is a solution of the given ODE by inspection, we see that y = Cx is
a solution of the given ODE for any constant C. This is the family of straight lines passing through
the origin with the exception of the x − axis. There is no solution of the given ODE satisfying
y(0) = b with b 6= 0. Any non-zero solution y = y(x) must be y = Cx with C 6= 0 for x > 0 and
x < 0, possibly with different C ′s. However, different C ′s is not possible as such a function would
not be differentiable at x = 0. It follows that y = Cx is the general solution of the given ODE.

Example 2: (x + 3)y′ = y − 1. By inspection, y = 1 is a solution. Dividing both sides of the given
DE by (y − 1)(x + 3) we get

y′

y − 1
=

1
x + 3

.

Integrating both sides we get
∫

y′

y − 1
dx =

∫

dx
x + 3

+ C,

from which we get ln |y−1| = ln |x+3|+A. Thus |y−1| = eA|x+3| from which y−1 = ±eA(x+3).
If we let C = ±eA, we get

y = 1 + C(x + 3).

Since y = 1 was found to be a solution by inspection, we get the one-parameter family of solutions

y = 1 + C(x + 3),

where C can be any scalar. This is the family of straight lines passing through the point (−3, 1)
with the exception of the line x = −3. Arguing as in the preceding example, the general solution of
the given ODE is y = 1 + C(x + 3).


