McGill University
Math 325B: Differential Equations
Notes for Lecture 17
Text: Ch. 4

In this lecture we will give a few techniques for solving certain linear differential equations with
non-constant coefficients. We will restrict our attention primarily to second order equations. Some
of the techniques can be extended to higher order equations.

Euler Equations. An important example of a non-constant linear DE is Euler’s equation

z?y" + azy' + by = q(2),

where a, b are constants. This DE has a singular point at x = 0. For x > 0 this equation can be
transformed into a constant coefficient DE by the change of independent variable x = e'. This is

most easily seen by noting that
dy dydr  dy

dt  dedt  Cdx Y

so that % = e’t%’. In operator form, we have

d_,d _ d
dt — dr  Tdx’

If we set D = 4 we have L = 7D so that

d2

prche e 'De7'D = e ?e'De”'D = e *(D - 1)D

so that x2y” = D(D — 1). By induction one easily proves that

A

T =e ™DD—-1)---(D—-n+1)

so that 2"y = D(D —1)--- (D — n+ 1)(y). Euler’s equation then becomes

d?y

dy
e T (a—1)= + by = q(e),

dt
a linear constant coeflicient DE. Solving this for y as a function of ¢ and then making the change of
variable t = In(z), we obtain the solution of Euler’s equation for y as a function of z. To treat the
case © < 0 we set x = —e’ so that ¢ = In |z|.

This method applies to the general n-th order Euler equation

x”y(") + alxnfly(”*l) 4+ o+ anly = q(x)

Example 1. Solve 22y” + 2y’ + y = In(x). Making the change of variable z = ¢! we obtain
d*y
zJ —¢
ez Y

whose general solution is y = Acos(t) + Bsin(t) + ¢t. Hence

y = Acos(In(z)) + Bsin(In(z)) + In(z)



is the general solution of the given DE.

Example 2. Solve 23y + 22%y" + 2y’ —y =0, (x > 0). This is a third order Euler equation.

Making the change of variable z = et, we get
(D(D—=1)(D—2)+2D(D—1)+ D —1)(y) = (D - 1)(D* +1)(y) =0
which has the general solution y = cye! + ¢z sin(t) + ¢3 cos(t). Hence
y = c12 + cosin(In(z)) + ¢z cos(In(x))

is the general solution of the given DE.

Exact Equations. The DE po(2)y” + p1(z)y’ + p2(x)y = q(z) is said to be exact if

m@%+m@ﬂ+m@M=%M@W+B@)

In this case the given DE is reduced to solving the linear DE

A(z)y + B(x) = / g(2)dz +C
a linear first order DE. The exactness condition can be expressed in operator form as
poD? + p1D + py = D(AD + B).

Since -L(A(z)y' + B(z)y) = A(z)y” + (A'(z) + B(z))y' + B'(z)y, the exactness condition holds if
and only if A(z), B(z) satisfy

A(x) =po(x), B(z)=pi(z) —py(x), B'(x)=pa(2).
Since the last condition holds if and only if p} (z) — p{j(x) = p2(x), we see that the given DE is exact
if and only if
Po—Pi+p2=0
in which case J
po(2)y" +p1(2)y + pa(@)y = ——(po(@)y’ + (1 () = po(2))y).

The DE po(2)y” + p1(x)y’ + p2(z)y = g(x) can always be made exact by the multiplication by a

non-zero function p. Indeed, the DE

ppo(2)y" + ppr(x)y" + ppe(x)y = pg(x)

is exact iff (upo)” — (up1)’ + (up2) = 0 or, equivalently, if u is a solution of the DE
poy” + (2p5 — p)y’ + (o — Py +p2)y = 0.

This DE is called the adjoint of the DE po(z)y” + p1(z)y’ + p2(x)y = 0. This DE is equal to its
adjoint, i.e. self-adjoint, iff pj, = po. If p; # 0 it can always be made self-adjoint by multiplication
by

p=e 7



Example 3. Solve the DE zy” + 2y’ +y =, (x> 0). This is an exact equation since the given
DE can be written

%ﬂwﬂﬂx—Dw=x-

Integrating both sides, we get
oy 4+ (z—Dy=22/24+ A

which is a linear DE. The solution of this DE is left as an exercise.

Example 4. The differential equation y”" — zy — 2y = 0 is not exact. Its adjoint is ¢y’ + 2y’ —y =0
which has y = x as a solution. It follows that the DE

zy’ —z?y — 22y =0

is exact; in fact, it can be written as %(xy’ — (22 +1)y) =0.

Reduction of Order
If 41 is a non-zero solution of the second order DE
po(x)y" + p1()y’ + p2(z)y =0
then y = C(x)y; is a solution of
po(@)y” + pr(@)y’ + p2(a)y = q(x)
if and only if
po(@)(C" (z)yr + 20" (2)yy + C(2)yy) + p1(2)(C'(x)y1 + C(x)y)) + pa(2)C(2)yr = 0
or equivalently, on simplifying,
poy1C”(x) + (poys + p1y1)C’ () = 0.

since poy; + p1y] + p2y1 = 0. This is a linear first order homogeneous DE for C’(z). Note that to
solve it we must work on an interval where po(z)y1(z) # 0. However, the solution found can always
be extended to the places where pg(x)y;(x) = 0 in a unique way by the fundamental theorem if the
DE is non-singular at these points.

The above procedure can also be used to find a particular solution of the non-homogenous DE
po(@)y"” + p1(2)y’ + p2(2)y = q(x) from a non-zero solution of po(x)y” + p1(x)y" + p2(z)y = 0.

Example 4. Solve 3" + 2y’ — y = 0. Here y = x is a solution so we try for a solution of the form
y = C(x)z. Substituting in the given DE, we get

C"(x)x + 20" (x) + 2(C'(x)x + C(z)) — C(z)r =0

which simplifies to
xC"(z) + (2 + 2)C"(x) = 0.

Solving this linear DE for C'(z), we get

C'(z) = Ae " /2 /22



so that J
x
Hence the general solution of the given DE is
dz
y:Alx+A2Z/W

Example 5. Solve y” + zy’ —y = z3e¢®. By the previous example, the general solution of the
associated homogeneous equation is

dz
y:A]Z’+A2$/W

Substituting y, = xC(x) in the given DE we get
zC”(z) + (22 +2)C' (x) = x3e”.
Solving for C’(z) we obtain C’(z) = z3¢®. This gives
C(x) = (2 — 32° + 62 — 6)e” + Ba.

We can therefore take
yp = (2t — 323 + 622 — 62)e”

so that the general solution of the given DE is

dz *
y:A1$+A2$/W+(x4_3$3+6x2_6x)6 .



