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In this lecture we will give a few techniques for solving certain linear differential equations with
non-constant coefficients. We will restrict our attention primarily to second order equations. Some
of the techniques can be extended to higher order equations.

Euler Equations. An important example of a non-constant linear DE is Euler’s equation

x2y′′ + axy′ + by = q(x),

where a, b are constants. This DE has a singular point at x = 0. For x > 0 this equation can be
transformed into a constant coefficient DE by the change of independent variable x = et. This is
most easily seen by noting that
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=
dy
dx

dx
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= et dy
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= xy′

so that dy
dx = e−t dy

dt . In operator form, we have

d
dt

= et d
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d
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If we set D = d
dt , we have d

dx = e−tD so that

d2

dx2 = e−tDe−tD = e−2tetDe−tD = e−2t(D − 1)D

so that x2y′′ = D(D − 1). By induction one easily proves that

dn

dxn = e−ntD(D − 1) · · · (D − n + 1)

so that xny(n) = D(D − 1) · · · (D − n + 1)(y). Euler’s equation then becomes

d2y
dt2

+ (a− 1)
dy
dt

+ by = q(et),

a linear constant coefficient DE. Solving this for y as a function of t and then making the change of
variable t = ln(x), we obtain the solution of Euler’s equation for y as a function of x. To treat the
case x < 0 we set x = −et so that t = ln |x|.

This method applies to the general n-th order Euler equation

xny(n) + a1xn−1y(n−1) + · · ·+ any = q(x).

Example 1. Solve x2y′′ + xy′ + y = ln(x). Making the change of variable x = et we obtain

d2y
dt2

+ y = t

whose general solution is y = A cos(t) + B sin(t) + t. Hence

y = A cos(ln(x)) + B sin(ln(x)) + ln(x)



is the general solution of the given DE.

Example 2. Solve x3y′′′ + 2x2y′′ + xy′ − y = 0, (x > 0). This is a third order Euler equation.
Making the change of variable x = et, we get

(D(D − 1)(D − 2) + 2D(D − 1) + D − 1)(y) = (D − 1)(D2 + 1)(y) = 0

which has the general solution y = c1et + c2 sin(t) + c3 cos(t). Hence

y = c1x + c2 sin(ln(x)) + c3 cos(ln(x))

is the general solution of the given DE.

Exact Equations. The DE p0(x)y′′ + p1(x)y′ + p2(x)y = q(x) is said to be exact if

p0(x)y′′ + p1(x)y′ + p2(x)y =
d
dx

(A(x)y′ + B(x)).

In this case the given DE is reduced to solving the linear DE

A(x)y′ + B(x) =
∫

q(x)dx + C

a linear first order DE. The exactness condition can be expressed in operator form as

p0D2 + p1D + p2 = D(AD + B).

Since d
dx (A(x)y′ + B(x)y) = A(x)y′′ + (A′(x) + B(x))y′ + B′(x)y, the exactness condition holds if

and only if A(x), B(x) satisfy

A(x) = p0(x), B(x) = p1(x)− p′0(x), B′(x) = p2(x).

Since the last condition holds if and only if p′1(x)− p′′0(x) = p2(x), we see that the given DE is exact
if and only if

p′′0 − p′1 + p2 = 0

in which case
p0(x)y′′ + p1(x)y′ + p2(x)y =

d
dx

(p0(x)y′ + (p1(x)− p′0(x))y).

The DE p0(x)y′′ + p1(x)y′ + p2(x)y = q(x) can always be made exact by the multiplication by a
non-zero function µ. Indeed, the DE

µp0(x)y′′ + µp1(x)y′ + µp2(x)y = µq(x)

is exact iff (µp0)′′ − (µp1)′ + (µp2) = 0 or, equivalently, if µ is a solution of the DE

p0y′′ + (2p′0 − p1)y′ + (p′′0 − p′1 + p2)y = 0.

This DE is called the adjoint of the DE p0(x)y′′ + p1(x)y′ + p2(x)y = 0. This DE is equal to its
adjoint, i.e. self-adjoint, iff p′0 = p2. If p′0 6= 0 it can always be made self-adjoint by multiplication
by

µ = e
R p1−p′0

p′0 .



Example 3. Solve the DE xy′′ + xy′ + y = x, (x > 0). This is an exact equation since the given
DE can be written

d
dx

(xy′ + (x− 1)y) = x.

Integrating both sides, we get
xy′ + (x− 1)y = x2/2 + A

which is a linear DE. The solution of this DE is left as an exercise.

Example 4. The differential equation y′′− xy− 2y = 0 is not exact. Its adjoint is y′′ + xy′− y = 0
which has y = x as a solution. It follows that the DE

xy′′ − x2y − 2xy = 0

is exact; in fact, it can be written as d
dx (xy′ − (x2 + 1)y) = 0.

Reduction of Order

If y1 is a non-zero solution of the second order DE

p0(x)y′′ + p1(x)y′ + p2(x)y = 0

then y = C(x)y1 is a solution of

p0(x)y′′ + p1(x)y′ + p2(x)y = q(x)

if and only if

p0(x)(C ′′(x)y1 + 2C ′(x)y′1 + C(x)y′′1 ) + p1(x)(C ′(x)y1 + C(x)y′1) + p2(x)C(x)y1 = 0

or equivalently, on simplifying,

p0y1C ′′(x) + (p0y′1 + p1y1)C ′(x) = 0.

since p0y′′1 + p1y′1 + p2y1 = 0. This is a linear first order homogeneous DE for C ′(x). Note that to
solve it we must work on an interval where p0(x)y1(x) 6= 0. However, the solution found can always
be extended to the places where p0(x)y1(x) = 0 in a unique way by the fundamental theorem if the
DE is non-singular at these points.

The above procedure can also be used to find a particular solution of the non-homogenous DE
p0(x)y′′ + p1(x)y′ + p2(x)y = q(x) from a non-zero solution of p0(x)y′′ + p1(x)y′ + p2(x)y = 0.

Example 4. Solve y′′ + xy′ − y = 0. Here y = x is a solution so we try for a solution of the form
y = C(x)x. Substituting in the given DE, we get

C ′′(x)x + 2C ′(x) + x(C ′(x)x + C(x))− C(x)x = 0

which simplifies to
xC ′′(x) + (x2 + 2)C ′(x) = 0.

Solving this linear DE for C ′(x), we get

C ′(x) = Ae−x2/2/x2



so that
C(x) = A

∫

dx
x2ex2/2 + B

Hence the general solution of the given DE is

y = A1x + A2x
∫

dx
x2ex2/2 .

Example 5. Solve y′′ + xy′ − y = x3ex. By the previous example, the general solution of the
associated homogeneous equation is

y = A1x + A2x
∫

dx
x2ex2/2 .

Substituting yp = xC(x) in the given DE we get

xC ′′(x) + (x2 + 2)C ′(x) = x3ex.

Solving for C ′(x) we obtain C ′(x) = x3ex. This gives

C(x) = (x3 − 3x2 + 6x− 6)ex + Bx.

We can therefore take
yp = (x4 − 3x3 + 6x2 − 6x)ex

so that the general solution of the given DE is

y = A1x + A2x
∫

dx
x2ex2/2 + (x4 − 3x3 + 6x2 − 6x)ex.


