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The Fundamental Existence and Uniqueness Theorem
For n-th order Differential Equations

In this lecture we will state and sketch the proof of the fundamental existence and uniqueness
theorem for the n-th order DE

y(n) = f(x, y, y′, . . . , y(n−1).

The starting point is to convert this DE into a system of first order DE’. Let y1 = y, y2 =
y′, . . . y(n−1) = yn. Then the above DE is equivalent to the system

dy1

dx
= y2

dy2

dx
= y3

...
dyn

dx
= f(x, y1, y2, . . . , yn).

More generally let us consider the system

dy1

dx
= f1(x, y1, y2, . . . , yn)

dy2

dx
= f2(x, y1, y2, . . . , yn)

...
dyn

dx
= fn(x, y1, y2, . . . , yn).

If we let Y = (y1, y2, . . . , yn), F (x, Y ) = (f1(x, Y ), f2(x, Y ), . . . , fn(x, Y ))
and dY

dx = (dy1
dx , dy2

dx , . . . , dyn
dx ) the system becomes

dY
dx

= F (x, Y ).

Theorem. If fi(x, y1, . . . , yn) and ∂fi
∂yj

are continuous on the n + 1-dimensional box

R : |x− x0| < a, |yi − ci| < b, (1 ≤ i ≤ n)

for 1 ≤ i, j ≤ n with |fi(x, y)| ≤ M and

| ∂fi

∂y1
|+ | ∂fi

∂y2
|+ . . . | ∂fi

∂yn
| < L

on R for all i, the initial value problem

dY
dx

= F (x, Y ), Y (x0) = (c1, c2, . . . , cn)



has a unique solution on the interval |x− x0| ≤ h = min(a, b/M).

The proof is exactly the same as for the proof for n = 1 if we use the following Lemma in place
of the mean value theorem.

Lemma. If f(x1, x2, . . . xn) and its partial derivatives are continuous on an n-dimensional box R,
then for any a, b ∈ R we have

|f(a)− f(b)| ≤ (| ∂f
∂x1

(c)|+ · · ·+ | ∂f
∂xb

(c)||a− b|

where c is a point on the line between a and b and |(x1, . . . , xn)| = max(|x1|, . . . , |xn|).

The lemma is proved by applying the mean value theorem to the function G(t) = f(ta+(1− t)b).
This gives

G(1)−G(0) = G′(c)

for some c between 0 and 1. The lemma follows from the fact that

G′(x) =
∂f
∂x1

(a1 − b1) + · · ·+ ∂f
∂x1

(an − bn).

The Picard iterations Yk(x) defined by

Y0(x) = Y0 = (c1, . . . , cn), Yk+1(x) = Y0 +
∫ x

x0

F (t, Yk(t))dt,

converge to the unique solution Y and

|Y (x)− Yk(x)| ≤ (M/L)ehLhk+1/(k + 1)!.

If f1(x, y1, . . . , y),
∂fi
∂yj

are continuous in the strip |x− x0| ≤ a and there is an L such that

|f(x, Y )− f(Z)| ≤ L|Y − Z|

then h can be taken to be a and M = max|f(x, Y0)|. This happens in the important special case

fi(x, y1, . . . , yn) = ai1(x)y1 + · · ·+ ain(x)yn + bi(x).

As a corollary of the above theorem we get the following fundamental theorem for n-th order
DE’s.

Theorem. If f(x, y1, . . . , yn) and ∂f
∂fj

are continuous on the box

R : |x− x0| ≤ a, |yi − ci| ≤ b (1 ≤ i ≤ n)

and |f(x, y1, . . . , yn)| ≤ M on R, then the initial value problem

y(n) = f(x, y, y′, . . . , y(n−1)), yi−1(x0) = ci (1 ≤ 1 ≤ n)

has a unique solution on the interval |x− x0| ≤ h = max(a, b/M).

Another important application is to the n-th order linear DE

a0(x)y(n) + a1(x)y(n−1) + · · ·+ an(x)y = b(x).



In this case f1 = y2, f2 = y3, fn = p1(x)y1 + · · · pn(x)yn + q(x) where pi(x) = an−i(x)/a0(x),
q(x) = −b(x)/a0(x).

Theorem. If a0(x), a1(x), . . . , an(x) are continuous on an interval I and a0(x) 6= 0 on I then, for
any x0 ∈ I, that is not an endpoint of I, and any scalars c1, c2, . . . , cn, the initial value problem

a0(x)y(n) + a1(x)y(n−1) + · · ·+ an(x)y = b(x), yi−1(x0) = ci (1 ≤ 1 ≤ n)

has a unique solution on the interval I.


