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Numerical Methods

Most differential equations cannot be solved in terms of known functions. However solutions do
exist in general and we have to be able to compute the values of these functions numerically to any
desired degree of accuracy and we will give three methods for doing just that, namely

1. Series Solutions,

2. Picard Iteration,

3. Euler Method.

In this lecture we will treat the first two.

Series Solutions. A function f(x) of one variable x is said to be analytic at a point x = x0 if it
has a convergent power series expansion

f(x) =
∞
∑

0

an(x− x0)n = a0 + a1(x− x0) + a2(x− x0)2 + · · ·+ an(x− x0)n + · · ·

in some interval |x − x0| < h, h > 0. In this case, one can show that an = f (n)/n!. Such a power
series is also called a Taylor series. If x0 = 0, it is also called a MacLaurin Series.

Similarly, a function f(x, y) of two variables is called analytic at the point (x0, y0) if it has a
convergent power series expansion

f(x, y) =
∞
∑

i,j=0

aij(x− x0)i(x− x0)j = a00 + a10(x− x0) + a01(y − y0) + · · ·

on some rectangle |x− x0| < h, |y − y0| < k, h, k > 0. We have

aij =
∂fi+j

∂xi∂yj (x0, y0)

i!j!
.

If f(x, y), g(x, y) are analytic at (x0, y0) and a, b are scalars then af + bg, fg are also analytic at
(x0, y0) as well as f/g provided that g(x0, y0) 6= 0.

If f(x, y) is analytic at (x0, y0) the DE y′ = f(x, y) has a power series solution y(x) =
∑

an(x−
x0)n with an = y(n)(x0). The formula

y(n) = (
∂
∂x

+ f(x, y)
∂
∂y

)n−1f(x, y)

allows us to find any of the values y(n) but one cannot find a general formula in most cases. Without
this information we cannot determine how well the partial sums of the series expansion approximate
the solution y(x) at a point x.



Example. Consider the initial value problem y′ = x + y2, y(0) = 1. Since f(x, y) is analytic at
(0, 1) we look for a solution of the form y =

∑

anxn. Differentiating y′ = x + y2 successively with
respect to x, we get y′′ = 1 + 2yy′, y′′′ = 2(y′)2 + 2yy′′. Hence,

y(0) = 1, y′(0) = 1, y′′(0) = 3, y′′′(0) = 8

which gives a0 = y(0) = 1, a1 = y′(0) = 1, a2 = y′′(0)/2 = 3/2, a3 = y′′′(0)/6 = 4/3. Hence,

y(x) = 1 + x + 3x2/2 + 4x3/3 + higher terms.

We leave as an exercise for the reader to show that the next term in the series is 17x4/12 and not
5x4/4 as one might have guessed. We don’t have a formula for the n-th term and so we cannot say
how good an approximation the first four terms of the above series give.

Picard Iteration. We assume that f(x, y) and ∂f
∂y are continuous on the rectangle

R : |x− x0| ≤ a, |y − y0| ≤ b

Then |f(x, y)| ≤ M , |∂f
∂y (x, y)| ≤ L on R. The initial value problem y′ = f(x, y), y(x0) = y0 is

equivalent to the integral equation

y = y0 +
∫ x

x0

f(t, y(t))dt.

Let the righthand side of the above equation be denoted by T (y). Then our problem is to find a
solution to y = T (y) which is a fixed point problem. To solve this problem we take as an initial
approximation to y the constant function y0(x) = y0 and consider the iterations yn = Tn(y0). The
function yn is called the n-th Picard iteration of y0. For example, for the initial value problem
y′ = x + y2, y(0) = 1 we have

y1(x) = 1 +
∫ x

0
(t + 1)dt = 1 + x + x2/2

y2(x) = 1 +
∫ x

0
(t + (1 + t + t2/2)2)dt = 1 + x + 3x2/2 + 2x3/3 + x4/4 + x5/20.

Contrary to the power series approximations we can determine just how good the Picard iterations
approximate y. In fact, we will see that the Picard iterations converge to a solution of our initial
value problem. More precisely we have the following result:

Theorem The Picard iterations yn = Tn(y0) converge to a solution y of y′ = f(x, y), y(x0) = y0

on the interval |x− x0| ≤ h = min(a, b/M). Moreover

|y(x)− yn(x)| ≤ (M/L)ehL(Lh)n+1/(n + 1)!

for |x− x0| ≤ h and the solution y is unique on this interval.

Proof. We have

|y1 − y0| = |
∫ x

x0

f(t, y0)| ≤ M |x− x0|

since |f(x, y)| ≤ M on R. Now |y1 − y0| ≤ b if |x − x0| ≤ h. So (x, y1(x)) is in R if |x − x0| ≤ h.
Similarly, one can show inductively that (x, yn(x)) is in R if |x − x0| ≤ h. Using the fact that, by
the mean value theorem for derivatives,

|f(x, z)− f(x,w| ≤ L|z − w|



for all (x,w), (x, z) in R, we obtain

|y2 − y1| = |
∫ x

x0

(f(t, y1)− f(t, y0)| ≤ ML|x− x0|2/2,

|y3 − y2| = |
∫ x

x0

(f(t, y2)− f(t, y1)| ≤ ML2|x− x0|3/6

and by induction |yn − yn−1| ≤ MLn−1|x − x0|n/n!. Since the series
∑∞

1 |yn − yn−1| is bounded
above term by term by the convergent series (M/L)

∑∞
1 (L|x−x0|)n/n!, its n-th partial sum yn−y0

converges, which gives the convergence of yn to a function y. Now since

y = y0 + (y1 − y0) + · · ·+ (yn − yn−1) +
∞
∑

i=n+1

(yi − yi−1)

we obtain

|y − yn| ≤
∞
∑

i=n+1

(M/L)(L(|x− x0|)i/i! ≤ (M/L)
(Lh)n+1

(n + 1)!
ehL.

For the uniqueness, suppose T (z) = z with (x, z(x) in R for |x− x0| ≤ h. Then

y(x)− z(x) =
∫ x

x0

(f(t, y(x))− f(t, z(x))dt.

If |y(x)− z(x)| ≤ A for x− x0| ≤ h we then obtain as above

|y(x)− z(x)| ≤ AL|x− x0|.

Now using this estimate, repeat the above to get

|y(x)− z(x)| ≤ AL2|x− x0|2/2.

Using induction we get that
|y(x)− z(x)| ≤ ALn|x− x0|n/n!

which converges to zero for all x. Hence y = z. QED

The key ingredient in the proof is the Lipschitz Condition

|f(x, y)− f(x, z)| ≤ L|y − z|.

If f(x, y) is continuous for |x− x0| ≤ a and all y and satisfies the above Lipschitz condition in this
strip the above proof gives the existence and uniqueness of the solution to the initial value problem
y′ = f(x, y), y(x0) = y0 on the interval |x− x0| ≤ a.


