McGill University
Math 325A: Differential Equations
Notes for Lecture 6

Text: Sections 3.1,3.2,3.4
We now give a few applications of differential equations.

Falling Bodies with Air Resistance. Let x be the height at time ¢ of a body of mass m falling
under the influence of gravity. If g is the force of gravity and bfli—f is the force on the body due to
air resistance, Newton’s Second Law of Motion gives the DE

m@*m —bu
ac =M

where v = ?Tf' This DE has the general solution

o(t) = % + Be~t,
The limit of v(t) as t — oo is mg/b, the terminal velocity of the falling body. Integrating once more,

we get
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Mixing Problems Suppose that a tank is being filled with brine at the rate of a units of volume
per second and at the same time b units of volume per second are pumped out. If the concentration
of the brine coming in is ¢ units of weight per unit of volume. If at time ¢t = tg the volume of brine
in the tank is V and contains x( units of weight of salt, what is the quantity of salt in the tank at
any time ¢, assuming that the tank is well mixed?

If x is the quantity of salt at any time ¢, we have ac units of weight of salt coming in per second

and
bz

VO + (CL — b)(t — to)

units of weight of salt going out. Hence
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a linear equation. If ¢ = b it has the solution
z(t) = Vo + (20 — cVp)e @tt0)/Vo,

As a numerical example, suppose a = b = 1 liter/min, ¢ = 1 grams/liter, V; = 1000 liters, zo = 0
and tg = 0. Then
z(t) = 1000(1 — e-001t)

is the quantity of salt in the tank at any time t. Suppose that after 100 minutes the tank springs a
leak letting out an additional liter of brine per minute. To find out how much salt is in the tank 12
hours after the leak begins we use the DE
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This equation has the general solution
x(t) = (1100 — t) ™' + C(1100 — t)%.

Using x(100) = 1000(1 — e~!) = 95.16, we find C = —9.048 x 10~ and x(820) = 177.1. When
t = 1100 the tank is empty and the differential equation is no a valid description of the physical
process. The concentration at time 100 < ¢ < 1100 is

(t)
=1+ C(1100 — ¢t
Tog 7 = L +C(1100 1)

which converges to 1 as t tends to 1100.

Heating and Cooling Problems Newton’s Law of Cooling states that the rate of change of
the temperature of a cooling body is proportional to the difference between its temperature T'
and the temperature of its surrounding medium. Assuming the surroundings maintain a constant
temperature T, we obtain the differential equation

dT
& - KT-T),
o k( )

where k is a constant. This is a linear DE with solution
T=T,+Ce*.
If T(0) = Tp then C =Ty — T, and
T =T, + (Ty — Ty )e *.

As an example consider the problem of determining the time of death of a healthy person who
died in his home some time before noon when his body was 70 degrees. If his body cooled another
5 degrees in 2 hours when did he die, assuming that the room was a constant 60 degrees. Taking
noon as t = 0 we have Ty = 70. Since Ts = 60, we get 65 — 60 = 10e~2* from which k = In(2)/2. To
determine the time of death we use the equation 98.6 — 60 = 10e~** which gives t = —In(3.86)/k =
—21n(3.86)/In(2) = —3.90. Hence the time of death was 8 : 06 AM.

Radioactive Decay A radioactive substance decays at a rate proportional to the amount of sub-
stance present. If x is the amount at time ¢ we have

dx
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where k is a constant. The solution of the DE is & = z(0)e~*t. If ¢ is the half-life of the substance

we have by definition
2(0)/2 = 2(0)e**

which gives k = In(2)/c.



