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Notes for Lecture 4

Text: Sections 2.4,2.5

Exact Equations. By a region of the xy-plane we mean a connected open subset of the plane. The
differential equation

M(x, y) + N(x, y)
dy
dx

= 0

is said to be exact on a region R if there is a function F (x, y) defined on R such that

d
dx

F (x, y) = M(x, y) + N(x, y)
dy
dx

.

Since
d
dx

F (x, y) =
∂F
∂x

+
∂F
∂y

dy
dx

this is true if M(x, y) = ∂F
∂x , N(x, y) = ∂F

∂y . In this case, if M,N are continuously differentiable on
R we have

∂M
∂y

=
∂N
∂x

.

Conversely, it can be shown that this is sufficient for the exactness of the given DE on R providing
that R is simply connected, .i.e., has no “holes”. Note that F (x, y), if it exists,is determined up to
an additive constant and the general solution of the given DE in implicit form is F (x, y) = C. The
curves F (x, y) = C are called integral curves of the given DE.

Example 1. 2x2y dy
dx + 2xy2 + 1 = 0. Here M = 2xy2 + 1, N = 2x2y and R = R2, the whole

xy-plane. The equation is exact on R2 since R2 is simply connected and

∂M
∂y

= 4xy =
∂N
∂x

.

To find F we have to solve the partial differential equations

∂F
∂x

= 2xy2 + 1,
∂F
∂y

= 2x2y.

If we integrate the first equation with respect to x holding y fixed, we get

F (x, y) = x2y2 + x + φ(y).

Differentiating this equation with respect to y gives

∂F
∂y

= 2x2y + φ′(y) = 2x2y

using the second equation. Hence φ′(y) = 0 and φ(y) is a constant function. The general solution
of our DE in implicit form is x2y2 + x = C.

Example 2. We have already solved the homogeneous DE

dy
dx

=
x− y
x + y

.



This equation can be written in the form

y − x + (x + y)
dy
dx

= 0

which is an exact equation. In this case, the general solution in implicit form is x(y−x)+y(x+y) = C,
i.e., y2 + 2xy − x2 = C, using the following result due to Euler.

Theorem. If F (x, y) is homogeous of degree n then

x
∂F
∂x

+ y
∂F
∂y

= nF (x, y).

Proof. The function F is homogeneous of degree n if F (tx, ty) = tnF (x, y). Differentiating this
with respect to t and setting t = 1 yields the result. QED

Integrating Factors. If the differential equation M + Ny′ = 0 is not exact it can sometimes be
made exact by multiplying it by a continuously differentiable function µ(x, y). Such a function is
called an integrating factor. An integrating factor µ satisfies the PDE ∂µM

∂y = ∂µN
∂x which can be

written in the form
(
∂M
∂y

− ∂N
∂x

)µ = N
∂µ
∂x

−M
∂µ
∂y

.

This equation can be simplified in special cases, two of which we treat next.

(a) µ is a function of x only. This happens if and only if

∂M
∂y − ∂N

∂x

N

is a function p(x) of x only in which case µ′ = p(x)µ.

(b) µ is a function of y only. This happens if and only if

∂M
∂y − ∂N

∂x

M

is a function q(y) of y only in which case µ′ = −q(y)µ.

Example 1. 2x2 + y + (x2y − x)y′ = 0. Here

∂M
∂y − ∂N

∂x

N
=

2− 2xy
x2y − x

=
−2
x

so that there is an integrating factor µ which is a function of x only which satisfies µ′ = −2µ/x.
Hence µ = 1/x2 is an integrating factor and 2 + y/x2 + (y − 1/x)y′ = 0 is an exact equation whose
general solution is 2x− y/x + y2/2 = C or 2x2 − y + xy2/2 = Cx.

Example 2.y + (2x− yey)y′ = 0. Here

∂M
∂y − ∂N

∂x

M
=
−1
y



so that there is an integrating factor which is a function of y only which satisfies µ′ = 1/y. Hence
y is an integrating factor and y2 + (2xy − y2ey)y′ = 0 is an exact equation with general solution
xy2 + (−y2 + 2y − 2)ey = C.

A word of caution is in order here. The solutions of the exact DE obtained by multiplying by
the integrating factor may have solutions which are not solutions of the original DE. This is due to
the fact that µ may be zero and one will have to possibly exclude those solutions where µ vanishes.
For example in the second example above, one gets a y = 0 of the exact DE which is not a solution
of the original DE.


