McGill University
Math 325A: Differential Equations
Notes for Lecture 3

Text: Sections 1.1,2.2,2.6

We now give some more examples of separable equations. We begin with the logistic equation

Y =ay(b—y)

where a,b > 0 are fixed constants. This equation arises in the study of the growth of certain
populations. Since the right-hand side of the equation is zero for y = 0 and y = b, the given DE
has y = 0 and y = b as solutions. More generally, if y' = f(z,y) and f(z,¢) = 0 for all x in some
interval I, the constant function y = ¢ on [ is a solution of y’ = f(z,y) since ¢y’ = 0 for a constant
function y.

To solve the logistic equation, we write it in the form

!
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y(b—y)

Integrating both sides with respect to = we get

y'de
/y(b—y) St

= a.

which can, since y'dz = dy, be written as

d
r = axr + C
Since, by partial fractions,
RS S
yb—y) by b—y

we obtain )
g(ln ly| = In|b—y|) = ax + C;.

Multiplying both sides by b and exponentiating both sides to the base e, we get

|b|y| ‘ _ eCleabm
-y

from which y/(b —y) = +£e“1e®?. The constant C = +e“* can be any non-zero scalar. We now

have
y = (b _ y)ceabm _ bCeabm _ Cyeabm

and hence y(1 4+ Ce®*) = bCe®*. This gives

bceabx
T 14 Ceabr’
However, this is not the general solution as the solutions y = 0 and y = b are not of the above form
for any non-zero constant C. Since the above equation reduces to y = 0 if C' = 0, we do recover one
of the omitted solutions if we allow C to be zero. But is

bCeb®
T 14 Ceabr
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the general solution? To see that it is, it suffices to notice that for any g, yo there is exactly one of
these solutions for which y(z¢) = yo and to appeal to the following theorem which guarantees the
existence and uniquess of solutions of solutions to the initial value problem y' = f(x,vy), y(zo) = yo
under certain conditions.

Fundamental Existence and Uniqueness Theorem. If the function f(z,y) together with its
partial derivative with respect to y are continuous on the rectangle

R:fz—xo| <a, ly—yo| <D
there is a unique solution to the initial value problem

y'=fzy), (@) =yo
defined on the interval |z — zg| < h where

h = min(a,b/M), M = max|f(@,y)l, (x,y) € R.

Note that this theorem indicates that a solution may not be defined for all z in the interval
|z — x9| < a. For example, the function

bCleabx

Y= 15 Ceate

is solution to 3 = ay(b — y) but not defined when 1 + Ce®* = 0 even though f(x,y) = ay(b—y
satisfies the conditions of the theorem for all x,y.

The next example show why the condition on the partial derivative in the above theorem is
necessary.

Consider the differential equation ' = y*/3. Again y = 0 is a solution. Separating variables and

integrating, we get
dy
/ g = et

which yields y?/3 = 22/3 + C and hence y = +(22/3 + C)?/2. Taking C' = 0, we get the solution
y = (22/3)%/2, (z > 0) which along with the solution y = 0 satisfies y(0) = 0. So the initial value
problem ¢/ = y/3, »(0) = 0 does not have a unique solution. The reason this is so is due to the fact
that g—i(x, y) = 1/3y*/3 is not continuous when y = 0.

Many differential equations become linear or separable after a change of variable. We now give
two examples of this.

Bernoulli Equation: y = p(z)y + ¢(x)y* (o # 1). Note that y = 0 is a solution. To solve this
equation, divide both sides by y® to get
y~y = p(2)y' ™ + q(x).

—,,/

® we have v’ = (1 — )y~ *y’ so that our differential equation becomes

Setting u = y'~
u' /(1) = p(x)u+q(r)

which is linear. We know how to solve this for u from which we get solve u = y' = to get .



Homogeneous Equation: 3y’ = F(y/z). To solve this we let u = y/x so that y = zu and
y' = u+ zu'. Substituting for y,y’ in our DE gives u + 2w’ = F(u) which is a separable equation.
Solving this for u gives y via y = xu. Note that u = a is a solution of zu' = F(u) — u whenever
F(a) = a and that this gives y = az as a solution of y' = f(y/x).

Example. ¢y = (z — y)/z + y. This is a homogeneous equation since

T—y _ 1—y/z
x+y l+y/z

Setting v = y/z, our DE becomes

, 1—u
U + U=
14+u
so that
, 1—u 1—2u —u?
Tu = -y = —
1+u 14+u

Note that the right-hand side is zero if © = —1 + /2. Separating variables and integrating with
respect to z, we get
(1+wu)du
—— =1 C
/1—2u—u2 n e+
which in turn gives
(=1/2)In|1 — 2u — v?| = In |z| + C.

Exponentiating, we get
1

V11— 2u —u?|

Squaring both sides and taking reciprocals, we get

= ez

u? 4+ 2u—1=C/x?

with C' = 41/e2%1. This equation can be solved for u using the quadratic formula. If zg,yo are
given with zg # 0 and up = yo/xo # —1 there is, by the fundamental, existence and uniqueness
theorem,a unique solution with u(xg) = yo. For example, if g = 1,50 = 2, we have C = 7 and
hence

u? +2u—1="7/2°

u=—-14++/2+7/z?

where the positive sign in the quadratic formula was chosen to make u = 2, x = 1 a solution. Hence

y=—xz+a\/2+7/22=—-x+ 22247

is the solution to the initial value problem

Solving for u, we get

;=Y
= , 1)=2
Y Tty y(1)

for x > 0 and one can easily check that it is a solution for all z. Moreover, using the fundamental
uniqueness, it can be shown that it is the only solution defined for all z.



