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Text: Sections 1.1,2.2,2.6

We now give some more examples of separable equations. We begin with the logistic equation

y′ = ay(b− y)

where a, b > 0 are fixed constants. This equation arises in the study of the growth of certain
populations. Since the right-hand side of the equation is zero for y = 0 and y = b, the given DE
has y = 0 and y = b as solutions. More generally, if y′ = f(x, y) and f(x, c) = 0 for all x in some
interval I, the constant function y = c on I is a solution of y′ = f(x, y) since y′ = 0 for a constant
function y.

To solve the logistic equation, we write it in the form

y′

y(b− y)
= a.

Integrating both sides with respect to x we get∫
y′dx

y(b− y)
= ax+ C

which can, since y′dx = dy, be written as∫
dy

b− y
= ax+ C.

Since, by partial fractions,
1

y(b− y)
=

1
b

(
1
y

+
1

b− y
)

we obtain
1
b

(ln |y| − ln |b− y|) = ax+ C1.

Multiplying both sides by b and exponentiating both sides to the base e, we get

|y|
|b− y|

= eC1eabx

from which y/(b − y) = ±eC1eabx. The constant C = ±eC1 can be any non-zero scalar. We now
have

y = (b− y)Ceabx = bCeabx − Cyeabx

and hence y(1 + Ceabx) = bCeabx. This gives

y =
bCeabx

1 + Ceabx
.

However, this is not the general solution as the solutions y = 0 and y = b are not of the above form
for any non-zero constant C. Since the above equation reduces to y = 0 if C = 0, we do recover one
of the omitted solutions if we allow C to be zero. But is

y = b, y =
bCeabx

1 + Ceabx



the general solution? To see that it is, it suffices to notice that for any x0, y0 there is exactly one of
these solutions for which y(x0) = y0 and to appeal to the following theorem which guarantees the
existence and uniquess of solutions of solutions to the initial value problem y′ = f(x, y), y(x0) = y0

under certain conditions.

Fundamental Existence and Uniqueness Theorem. If the function f(x, y) together with its
partial derivative with respect to y are continuous on the rectangle

R : |x− x0| ≤ a, |y − y0| ≤ b

there is a unique solution to the initial value problem

y′ = f(x, y), y(x0) = y0

defined on the interval |x− x0| < h where

h = min(a, b/M), M = max |f(x, y)|, (x, y) ∈ R.

Note that this theorem indicates that a solution may not be defined for all x in the interval
|x− x0| ≤ a. For example, the function

y =
bCeabx

1 + Ceabx

is solution to y′ = ay(b − y) but not defined when 1 + Ceabx = 0 even though f(x, y) = ay(b − y
satisfies the conditions of the theorem for all x, y.

The next example show why the condition on the partial derivative in the above theorem is
necessary.

Consider the differential equation y′ = y1/3. Again y = 0 is a solution. Separating variables and
integrating, we get ∫

dy

y1/3
= x+ C1

which yields y2/3 = 2x/3 + C and hence y = ±(2x/3 + C)3/2. Taking C = 0, we get the solution
y = (2x/3)3/2, (x ≥ 0) which along with the solution y = 0 satisfies y(0) = 0. So the initial value
problem y′ = y1/3, y(0) = 0 does not have a unique solution. The reason this is so is due to the fact
that ∂f

∂y (x, y) = 1/3y2/3 is not continuous when y = 0.
Many differential equations become linear or separable after a change of variable. We now give

two examples of this.

Bernoulli Equation: y′ = p(x)y + q(x)yα (α 6= 1). Note that y = 0 is a solution. To solve this
equation, divide both sides by yα to get

y−αy′ = p(x)y1−α + q(x).

Setting u = y1−α we have u′ = (1− α)y−αy′ so that our differential equation becomes

u′/(1− α) = p(x)u+ q(x)

which is linear. We know how to solve this for u from which we get solve u = y1−α to get y.



Homogeneous Equation: y′ = F (y/x). To solve this we let u = y/x so that y = xu and
y′ = u + xu′. Substituting for y, y′ in our DE gives u + xu′ = F (u) which is a separable equation.
Solving this for u gives y via y = xu. Note that u = a is a solution of xu′ = F (u) − u whenever
F (a) = a and that this gives y = ax as a solution of y′ = f(y/x).

Example. y′ = (x− y)/x+ y. This is a homogeneous equation since

x− y
x+ y

=
1− y/x
1 + y/x

.

Setting u = y/x, our DE becomes

xu′ + u =
1− u
1 + u

so that

xu′ =
1− u
1 + u

− u =
1− 2u− u2

1 + u
.

Note that the right-hand side is zero if u = −1 ±
√

2. Separating variables and integrating with
respect to x, we get ∫

(1 + u)du
1− 2u− u2

= ln |x|+ C1

which in turn gives
(−1/2) ln |1− 2u− u2| = ln |x|+ C1.

Exponentiating, we get
1√

|1− 2u− u2|
= eC1 |x|.

Squaring both sides and taking reciprocals, we get

u2 + 2u− 1 = C/x2

with C = ±1/e2C1 . This equation can be solved for u using the quadratic formula. If x0, y0 are
given with x0 6= 0 and u0 = y0/x0 6= −1 there is, by the fundamental, existence and uniqueness
theorem,a unique solution with u(x0) = y0. For example, if x0 = 1, y0 = 2, we have C = 7 and
hence

u2 + 2u− 1 = 7/x2

Solving for u, we get
u = −1 +

√
2 + 7/x2

where the positive sign in the quadratic formula was chosen to make u = 2, x = 1 a solution. Hence

y = −x+ x
√

2 + 7/x2 = −x+
√

2x2 + 7

is the solution to the initial value problem

y′ =
x− y
x+ y

, y(1) = 2

for x > 0 and one can easily check that it is a solution for all x. Moreover, using the fundamental
uniqueness, it can be shown that it is the only solution defined for all x.


