McGill University Math 325A: Differential Equations Notes for Lecture 22 Text: Ch. 8

Bessel Functions

In this lecture we study an important class of functions which are defined by the differential equation

$$x^{2}y'' + xy' + (x^{2} - \nu^{2})y = 0,$$

where $\nu \ge 0$ is a fixed parameter. This DE is known **Bessel's equation of order** ν ; do not confuse ν with the order of the DE which is 2. This equation has x = 0 as its only singular point. Moreover, this singular point is a regular singular point since

$$xp(x) = 1$$
, $x^2q(x) = x^2 - \nu^2$.

Bessel's equation can also be written

$$y'' + \frac{1}{x}y' + (1 - \frac{\nu^2}{x^2}) = 0$$

which for x large is approximately the DE y'' + y = 0 so that we can expect the solutions to oscillate for x large. The indicial equation is $r(r-1) + r - \nu^2 = r - \nu^2$ whose roots are $r_1 = \nu$ and $r_2 = -\nu$. The recursion equations are

$$((1+r)^2 - \nu^2)a_1 = 0, \quad ((n+r)^2 - \nu^2)a_n = -a_{n-2}, \text{ for } n \ge 2.$$

The general solution of these equations is $a_{2n+1} = 0$ for $n \ge 0$ and

$$a_{2n}(r) = \frac{(-1)^n a_0}{(r+2-\nu)(r+4-\nu)\cdots(r+2n-\nu)(r+2+\nu)(r+4+\nu)\cdots(r+2n+\nu)}.$$

If ν is not an integer, we obtain two linearly independent solutions of Bessel's equation $J_{\nu}(x)$, $J_{-\nu}(x)$ by taking $r = \pm \nu$, $a_0 = 1/2^{\nu} \Gamma(\nu + 1)$. Since, in this case,

$$a_{2n} = \frac{(-1)^n a_0}{2^{2n} n! (r+1)(r+2) \cdots (r+n)},$$

we have for $r = \pm \nu$

$$J_r(x) = \sum_{n=0}^{\infty} \frac{(-1)^n}{n! \Gamma(r+n+1)} (\frac{x}{2})^{2n+r}.$$

These functions are called **Bessel functions of first kind of order** ν . For $\nu = 0$ we have

$$J_0(x) = \sum_{n=0}^{\infty} \frac{(-1)^n}{2^{2n} (n!)^2} x^{2n}$$

and for $\nu=1$

$$J_1(x) = \frac{x}{2} \sum_{n=0}^{\infty} \frac{(-1)^n}{2^{2n} n! (n+1)!} x^{2n}.$$

Recall that the Gamma function $\Gamma(x)$ is defined for $x \ge -1$ by

$$\Gamma(x+1) = \int_0^\infty e^{-t} t^x dt.$$

For $x \ge 0$ we have $\Gamma(x+1) = x\Gamma(x)$, so that $\Gamma(n+1) = n!$ for n an integer ≥ 0 . We have

$$\Gamma(\frac{1}{2}) = \int_0^\infty e^{-t} t^{-1/2} dt = 2 \int_0^\infty e^{-x^2} dt = \sqrt{\pi}.$$

The Gamma function can be extended uniquely for all x except for $x = 0, -1, -2, \ldots, -n, \ldots$ to a function which satisfies the identity $\Gamma(x) = \Gamma(x)/x$. This is true even if x is taken to be complex. The resulting function is analytic except at zero and the negative integers where it has a simple pole.

As an exercise the reader can show that

$$J_{\frac{1}{2}}(x) = \sqrt{\frac{2}{\pi x}}\cos(x), \quad J_{-\frac{1}{2}} = \sqrt{\frac{2}{\pi x}}\sin(x)$$

For $\nu = -m$ with m an integer ≥ 0 one has to proceed differently to get a second solution. For $\nu = 0$ the indicial equation has a repeated root and one has a second solution of the form

$$y_2 = J_0(x)\ln(x) + \sum_{n=0}^{\infty} a'_{2n}(0)x^{2n}$$

where

$$a_{2n}(r) = \frac{(-1)^n}{(r+2)^2(r+4)^2\cdots(r+2n)^2}$$

It follows that

$$\frac{a'_{2n}(r)}{a_{2n}} = -2\left(\frac{1}{r+2} + \frac{1}{r+4} + \dots + \frac{1}{r+2n}\right)$$

so that

$$a'_{2n}(0) = (1 + \frac{1}{2} + \dots + \frac{1}{n})a_{2n}(0) = h_n a_{2n}(0)$$

Hence

$$y_2 = J_0(x)\ln(x) + \sum_{n=0}^{\infty} \frac{(-1)^n h_n}{2^{2n} (n!)^2} x^{2n}.$$

Instead of y_2 , the second solution is usually taken to be a certain linear combination of y_2 and J_0 . For example, the function

$$Y_0(x) = \frac{2}{\pi}(y_2(x) + (\gamma - \ln(2))J_0(x))$$

where $\gamma = \lim_{n \to \infty} (h_n - \ln(n) \approx 0.5772)$, is known as the **Weber function of order** 0. The constant γ is known as Euler's constant; it is not known whether γ is rational or not.

If $\nu = -m$, with m > 0, the the roots of the indicial equation differ by an integer and one has a solution of the form

$$y_2 = aJ_m(x)\ln(x) + \sum_{n=0}^{\infty} b'_{2n}(-m)x^{2n+m}$$

where $b_{2n}(r) = (r+m)a_{2n}(r)$ and $a = b_{2m}(-m)$. In the case m = 1 we have

$$b_{2n}(r) = \frac{(-1)^n a_0}{(r+3)(r+5)\cdots(r+2n-1)(r+3)(r+5)\cdots(r+2n+1)},$$

$$b'_{2n}(r) = -(\frac{1}{r+3} + \frac{1}{r+5} + \dots + \frac{1}{r+2n-1} + \frac{1}{r+3} + \frac{1}{r+5} + \dots + \frac{1}{r+2n+1})b_{2n}(r),$$

$$b'_{2n}(-1) = \frac{-1}{2}(h_n + h_{n-1})b_{2n}(-1),$$

$$= \frac{(-1)^{n+1}(h_n + h_{n-1})}{2^{2n+1}(n-1)!n!}$$

so that

$$y_2 = \frac{-1}{2}J_1(x)\ln(x) + \frac{1}{x}\sum_{n=0}^{\infty}\frac{(-1)^{n+1}(h_n + h_{n-1})}{2^{2n+1}(n-1)!n!}x^{2n}$$

where, by convention, $h_{-1} = h_0 = 0$, (-1)! = 1. The Weber function of order 1 is defined to be

$$Y_1(x) = \frac{4}{\pi} (-y_2(x) + (\gamma - \ln(2)J_1(x))).$$

The case m > 1 is slightly more complicated and will not be treated here.

The second solutions $y_2(x)$ of Bessel's equation of order $m \ge 0$ are unbounded as $x \to 0$. It follows that any solution of Bessel's equation of order $m \ge 0$ which is bounded as $x \to 0$ is a scalar multiple of J_m . The solutions which are unbounded as $x \to 0$ are called **Bessel functions of the second kind**. The Weber functions are Bessel functions of the second kind.