McGill University Math 325A: Differential Equations Notes for Lecture 21

Text: Ch. 8

In this lecture we investigate series solutions for the general linear DE

$$a_0(x)y^{(n)} + a_1(x)y^{(n-1)} + \dots + a_n(x)y = b(x),$$

where the functions a_1, a_2, \ldots, a_n, b are analytic at $x = x_0$. If $a_0(x_0) \neq 0$ the point $x = x_0$ is called an **ordinary point** of the DE. In this case, the solutions are analytic at $x = x_0$ since the normalized DE

$$y^{(n)} + p_1(x)y^{(n-1)} + \dots + p_n(x)y = q(x),$$

where $p_i(x) = a_i(x)/a_0(x)$, $q(x) = b(x)/a_0(x)$, has coefficient functions which are analytic at $x = x_0$. If $a_0(x_0) = 0$, the point $x = x_0$ is said to be a **singular point** for the DE. If k is the multiplicity of the zero of $a_0(x)$ at $x = x_0$ and the multiplicities of the other coefficient functions at $x = x_0$ is as big then, on cancelling the common factor $(x - x_0)^k$ for $x \neq x_0$, the DE obtained holds even for $x = x_0$ by continuity, has analytic coefficient functions at $x = x_0$ and $x = x_0$ is an ordinary point. In this case the singularity is said to be **removable**. For example, the DE $xy'' + \sin(x)y' + xy = 0$ has a removable singularity at x = 0.

In general, the solution of a linear DE in a neighbourhood of a singularity is extremely difficult. However, there is an important special case where this can be done. For simplicity, we treat the case of the general second order homogeneous DE

$$a_0(x)y'' + a_1(x)y' + a_2(x)y = 0, \quad (x > x_0),$$

with a singular point at $x = x_0$. Without loss of generality we can, after possibly a change of variable $x - x_0 = t$, assume that $x_0 = 0$. We say that x = 0 is a regular singular point if the normalized DE

$$y'' + p(x)y' + q(x)y = 0, \quad (x > 0),$$

is such that xp(x) and $x^2q(x)$ are analytic at x=0. A necessary and sufficient condition for this is that

$$\lim_{x \to 0} x p(x) = p_0, \quad \lim_{x \to 0} x^2 q(x) = q_0$$

exist and are finite. In this case

$$xp(x) = p_0 + p_1x + \dots + p_nx^n + \dots, \quad x^2q(x) = q_0 + q_1x + \dots + q_nx^n + \dots$$

and the given DE has the same solutions as the DE

$$x^{2}y'' + x(xp(x))y' + x^{2}q(x)y = 0.$$

This DE is an Euler DE if $xp(x) = p_0$, $x^2q(x) = q_0$. This suggests that we should look for solutions of the form

$$y = x^r (\sum_{n=0}^{\infty} a_n x^n) = \sum_{n=0}^{\infty} a_n x^{n+r},$$

with $a_0 \neq 0$. Substituting this in the DE gives

$$\sum_{n=0}^{\infty} (n+r)(n+r-1)a_n x^{n+r} + (\sum_{n=0}^{\infty} p_n x^{n+r})(\sum_{n=0}^{\infty} (n+r)a_n x^{n+r}) + (\sum_{n=0}^{\infty} q_n x_n)(\sum_{n=0}^{\infty} a_n x^n) = 0$$

which, on expansion and simplification, becomes

$$a_0 F(r) x^r + \sum_{n=1}^{\infty} (F(n+r)a_n + ((n+r-1)p_1 + q_1)a_{n-1} + \dots + (rp_n + q_n)a_0) x^{n+r} = 0,$$

where $F(r) = r(r-1) + p_0 r + q_0$. Equating coefficients to zero, we get

$$r(r-1) + p_0 r + q_0 = 0,$$

the indicial equation, and

$$F(n+r)a_n = -((n+r-1)p_1 + q_1)a_{n-1} - \dots - (rp_n + q_n)a_0$$

for $n \ge 1$. If the roots r_1, r_2 of the indicial equation don't differ by an integer, the above recursive equation determines a_n uniquely for $r = r_1$ and $r = r_2$. If $a_n(r_i)$ is the solution for $r = r_i$ and $a_0 = 1$, we obtain the linearly independent solutions

$$y_1 = x^{r_1} (\sum_{n=0}^{\infty} a_n(r_1)x^n), \quad y_2 = x^{r_2} (\sum_{n=0}^{\infty} a_n(r_2)x^n).$$

It can be shown that the radius of convergence of the infinite series is the distance to the singularity of the DE nearest to the singularity x=0. If $r_1-r_2=N\geq 0$, the above recursion equations can be solved for $r=r_1$ as above to give a solution

$$y_1 = x^{r_1} (\sum_{n=0}^{\infty} a_n(r_1) x^n).$$

A second linearly independent solution can then be found by reduction of order.

However, the series calculations can be quite involved and a simpler method exists which is based on solving the recursion equation for a_n as a ratio of polynomials. This can always be done since F(n+r) is not the zero polynomial for any $n \ge 0$. If $a_n(r)$ is the solution with $a_0(r) = 1$ and we let

$$y = y(x,r) = x^{r} (\sum_{n=0}^{\infty} a_{n}(r)x^{n}),$$

we have

$$x^{2}y'' + x^{2}p(x)y' + x^{2}q(x)y = (r - r_{1})(r - r_{2})x^{r}.$$

If $r_1 = r_2$, we have $x^2y'' + x^2p(x)y' + x^2q(x)y = (r - r_1)^2x^r$. Differentiating this equation with respect to r, we get

$$x^{2}\left(\frac{\partial y}{\partial r}\right)'' + x^{2}p(x)\left(\frac{\partial y}{\partial r}\right)' + x^{2}q(x)\frac{\partial y}{\partial r} = 2(r - r_{1}) + (r - r_{1})^{2}x^{r}\ln(x).$$

Setting $r = r_1$, we find that

$$y_2 = \frac{\partial y}{\partial r}(x, r_1) = x^{r_1} \left(\sum_{n=0}^{\infty} a_n(r_1)x^n\right) \ln(x) + x^{r_1} \sum_{n=0}^{\infty} a'_n(r_1)x^n = y_1 \ln(x) + x^{r_1} \sum_{n=0}^{\infty} a'_n(r_1)x^n,$$

where $a'_n(r)$ is the derivative of $a_n(r)$ with respect to r, is a second linearly independent solution. Since this solution is unbounded as $x \to 0$, any solution of the given DE wich is bounded as $x \to 0$ must be a scalar multiple of y_1 .

If $r_1 - r_2 = N > 0$, and we let $z(x,r) = (r - r_2)y(x,r)$, we have

$$x^2z'' + x^2p(x)z' + x^2q(x)z = (r - r_1)(r - r_2)^2x^r$$

so that

$$x^{2}(\frac{\partial z}{\partial r})'' + x^{2}p(x)(\frac{\partial z}{\partial r})' + x^{2}q(x)\frac{\partial z}{\partial r} = (r - r_{2})((r - r_{2}) + 2(r - r_{1}))x^{r} + (r - r_{1})(r - r_{2})^{2}x^{r}\ln(x).$$

Setting $r=r_2$, we see that $y_2=\frac{\partial z}{\partial r}(x,r_2)$ is a solution of the given DE. It can be shown that

$$y_2 = ax^{r_1} \left(\sum_{n=0}^{\infty} a_n(r_1)x^n\right) \ln(x) + x^{r_2} \left(\sum_{n=0}^{\infty} b'_n(r_2)x^n\right) = ay_1 \ln(x) + x^{r_2} \left(\sum_{n=0}^{\infty} b'_n(r_2)x^n\right),$$

where $b_n(r) = (r - r_2)a_n(r)$ and $a = b_N(r_2)$. This gives a second linearly independent solution. The above method is due to Frobenius and is called the **Frobenius method**.

Example 1. The DE 2xy'' + y' + 2xy = 0 has a regular singular point at x = 0 since xp(x) = 1/2 and $x^2q(x) = x^2$. The indicial equation is

$$r(r-1) + \frac{1}{2}r = r(r - \frac{1}{2}).$$

The roots are $r_1 = 1/2$, $r_2 = 0$ which do not differ by an integer. We have

$$(r+1)(r+\frac{1}{2})a_1 = 0,$$

 $(n+r)(n+r-\frac{1}{2})a_n = -a_{n-2}$ for $n \ge 2,$

so that $a_n = -2a_{n-2}/(r+n)(2r+2n-1)$ for $n \ge 2$. Hence $0 = a_1 = a_3 = \cdots + a_{2n+1}$ for $n \ge 0$ and

$$a_2 = -\frac{2}{(r+2)(2r+3)}a_0, \quad a_4 = -\frac{2}{(r+4)(2r+7)}a_2 = \frac{2^2}{(r+2)(r+4)(2r+3)(2r+7)}a_0.$$

It follows by induction that

$$a_{2n} = (-1)^{2n} \frac{2^n}{(r+2)(r+4)\cdots(r+2n)(2r+3)(2r+4)\cdots(2r+2n-1)} a_0.$$

Setting, r = 1/2, 0, $a_0 = 1$, we get

$$y_1 = \sqrt{x} \sum_{n=0}^{\infty} \frac{x^{2n}}{(5 \cdot 9 \cdots (4n+1))n!}, \quad y_2 = \sum_{n=0}^{\infty} \frac{x^{2n}}{(3 \cdot 7 \cdots (4n-1))n!}$$

The infinite series have an infinite radius of convergence since x = 0 is the only singular point of the DE.

Example 2. The DE xy'' + y' + y = 0 has a regular singular point at x = 0 with xp(x) = 1, $x^2q(x) = x$. The indicial equation is

$$r(r-1) + r = r^2 = 0.$$

This equation has only one root x = 0. The recursion equation is

$$(n+r)^2 a_n = -a_{n-1}, \quad n \ge 1.$$

The solution with $a_0 = 1$ is

$$a_n(r) = (-1)^n \frac{1}{(r+1)^2(r+2)^2 \cdots (r+n)^2}.$$

setting r = 0 gives the solution

$$y_1 = \sum_{n=0}^{\infty} (-1)^n \frac{x^n}{(n!)^2}.$$

Taking the derivative of $a_n(r)$ with respect to r we get, using $a'_n(r) = a_n(r) \frac{d}{dr} \ln(a_n(r))$ (logarithmic differentiation), we get

$$a'_n(r) = \left(\frac{2}{r+1} + \frac{2}{r+2} + \dots + \frac{2}{r+n}\right)a_n(r)$$

so that

$$a'_n(0) = 2(-1)^n \frac{\frac{1}{1} + \frac{1}{2} + \dots + \frac{1}{n}}{(n!)^2}.$$

Therefore a second linearly independent solution is

$$y_2 = y_1 \ln(x) + 2 \sum_{n=1}^{\infty} (-1)^n \frac{\frac{1}{1} + \frac{1}{2} + \dots + \frac{1}{n}}{(n!)^2} x^n.$$

The above series converge for all x. Any bounded solution of the given DE must be a scalar multiple of y_1 .