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Math 325A: Differential Equations

Notes for Lecture 2

Text: Sections 2.1, 2.2

In this lecture we will treat linear and separable first order ODE’s.
Linear Equations. The general first order ODE has the form F (x, y, y′) = 0 where y = φ(x). If it
is linear it can be written in the form

a0(x)y′ + a1(x)y = b(x)

where a0(x), a(x), b(x) are continuous functions of x on some interval I. To bring it to normal form
y′ = f(x, y) we have to divide both sides of the equation by a0(x). This is possible only for those x
where a0(x) 6= 0. After possibly shrinking I we assume that a0(x) 6= 0 on I. So our equation has
the form (standard form)

y′ + p(x)y = q(x)

with p(x) = a1(x)/a0(x) and q(x) = b(x)/a0(x), both continous on I. Solving for y′ we get the
normal form for a linear first order ODE, namely

y′ = q(x)− p(x)y.

We now introduce the function, which is called an integrating factor,

µ(x) = e
∫
p(x)dx

It has the property µ′(x) = p(x)µ(x) and µ(x) 6= 0 for all x. Hence our differential equation is
eqivalent (has the same solutions) to the equation

µ(x)y′ + µ(x)p(x)y = µ(x)q(x).

Since the left hand side of this equation is the derivative of µ(x)y, it can be written in the form

d

dx
(µ(x)y) = µ(x)q(x).

Integrating both sides, we get

µ(x)y =
∫
µ(x)q(x)d(x) + C

with C an arbitrary constant. Solving for y, we get

y =
1

µ(x)

∫
µ(x)q(x)d(x) +

C

µ(x)

as the general solution for the general linear first order ODE

y′ + p(x)y = q(x).

Note that for any pair of scalars a, b with a in I, there is a unique scalar C such that y(a) = b.
Geometrically, this means that the solution curves y = φ(x) are a family of non-intersecting curves
which fill the region I × R.



Example 1: y′ + xy = x. This is a linear first order ODE in standard form with p(x) = q(x) = x.
The integrating factor is

µ(x) = e
∫
xdx = ex

2/2.

Hence, after multiplying both sides of our differential equation, we get

d

dx
(ex

2/2y) = xex
2/2

which, after integrating both sides, yields

ex
2/2y =

∫
xex

2/2dx+ C = ex
2/2 + C.

Hence the general solution is y = 1 +Ce−x
2/2. The solution satisfying the initial condition y(0) = 1

is y = 1 and the solution satisfying y(0) = a is y = 1 + (a− 1)e−x
2/2.

Example 2: xy′ − 2y = x3 sin(x),
(x > 0). We bring this linear first order equation to standard form by dividing by x. We get

y′ +
−2
x
y = x2 sin(x).

The integrating factor is
µ(x) = e

∫
−2dx/x = e−2 ln(x) = 1/x2.

After multiplying our DE in standard form by 1/x2 and simplifying, we get

d

dx
(y/x2) = sin(x)

from which y/x2 = − cos(x) +C and y = −x2 cos(x) +Cx2. Note that the later are solutions to the
DE xy′−2y = x3 sin(x) and that they all satisfy the initial condition y(0) = 0. This non-uniqueness
is due to the fact that x = 0 is a singular point of the DE.

Separable Equations. The first order ODE y′ = f(x, y) is said to be separable if f(x, y) can
be expressed as a product of a function of x times a function of y. The DE then has the form
y′ = g(x)h(y) and, dividing both sides by h(y), it becomes

y′

h(y)
= g(x).

Of course this is not valid for those solutions y = φ(x) at the points where φ(x) = 0. Assuming the
continuity of g and h, we can integrate both sides of the equation to get∫

y′

h(y)
dx =

∫
g(x)dx+ C.

This will in general give y implicitly in terms of x and one has to solve this implicit equation for y
to get y explicitly as a function of x.

Example 1: y′ − ay = 0. This is a linear first order DE with general solution y = Ceax as can
easily be seen by the first section. Since y′ = ay it is also a separable equation. To solve it using
the above method we divide both sides of the equation by y to get

y′

y
= a.



Integrating both sides we get ln |y| = ax + C. Exponentiating both sides with base e we get
|y| = eax+C = eCeax so that y = ±eCeax. The constant ±eC can be any non-zero scalar. These
solutions are never zero and the are the only solutions which don’t vanish at some point. The method
does not find the solution y = 0. In this case it can be found by inspection.

Example 2: y′ = y−1
x+3 (x > −3). By inspection, y = 1 is a solution. Dividing both sides of the

given DE by y − 1 we get
y′

y − 1
=

1
x+ 3

.

This will be possible for those x where y(x) 6= 1. Integrating both sides we get∫
y′

y − 1
dx =

∫
dx

x+ 3
+ C,

from which we get ln |y−1| = ln(x+3)+C. Thus |y−1| = eC(x+3) from which y−1 = ±eC(x+3).
If we let A = ±eC , we get

y = 1 +A(x+ 3)

which a family lines passing through (−3, 1); for any (a, b) with b 6= 0 there is only one member of
this family which passes through (a, b). Since y = 1 was found to be a solution by inspection the
general solution is

y = 1 + C(x+ 3),

where C can be any scalar.


