McGill University Math 325A: Differential Equations Notes for Lecture 19 Text: Ch. 7

In this lecture we will show how to solve DE's of the form P(D)(y) = f with f piecewise continuous using Laplace transforms. The example given in the first lecture on Laplace transforms was just such a problem and we will solve this problem a second time using Laplace transforms. The justification for this method is the following theorem.

Theorem. If $p_1(t), p_2(t), \ldots, p_n(t)$ are continous for $t \ge 0$ and f(t) is piecewise continuous for $t \ge 0$ there exists a unique function y = y(t) such that (i) $y(t), y'(t), \ldots, y^{(n-1)}(t)$ are continuous for $t \ge 0$, (ii) $y(0) = c_1, y'(0) = c_2, \ldots, y^{(n-1)}(0) = c_n$ and (iii) For those $t \ne$ the points of discontinuity of f(t), the function y = y(t) satisfies the differential equation

$$y^{(n)} + p_1(t)y^{(n-1)} + \dots + p_n(t)y = f(t).$$

Proof. Let $a_0 = 0 < a_1 < a_2, \ldots < a_m < \infty$ be a sequence of points with f(t) continuous on each interval $a_i < t < a_{i+1}$ with i < m and on the interval $a_m < t$. For $0 \le i < m$, we let $f_i(t)$ be the function on $a_i \le t \le a_{i+1}$ which is equal to f(t) for $t \ne a_i, a_{i+1}$ and $f_i(a_i) = f(a_i+),$ $f_i(a_{i+1}) = f(a_{i+1}-)$. Let $f_m(t)$ be the function on $a_m \le t$ which is equal to f(t) for $a_m \le t$ and equal to $f(a_m+)$ at a_m . We now define inductively a sequence of initial value problems P_i as follows. The problem P_0 is the initial value problem

$$y^{(n)} + p_1(t)y^{(n-1)} + \dots + p_n(t)y = f_0(t), \quad y(0) = c_1, y'(0) = c_2, \dots, y^{(n-1)} = c_n.$$

This problem has a unique solution $y = y_0(t)$ on $a_0 \le t \le a_1$. The problem P_1 has differential equation

$$y^{(n)} + p_1(t)y^{(n-1)} + \dots + p_n(t)y = f_1(t), \quad (a_1 \le t \le a_2)$$

with initial conditions $y(a_1) = y_0(a_1), y'(a_1) = y'_0(a_1), \ldots, y^{(n-1)}(a_1) = y_0^{(n-1)}(a_1)$. This problem has a unique solution $y = y_1(t)$ on the interval $a_1 \le t \le a_2$. We proceed in the same way step by step over each interval $a_i \le t \le a_{i+1}$ defining an initial value problem P_i having differential equation

$$y^{(n)} + p_1(t)y^{(n-1)} + \dots + p_n(t)y = f_i(t), \quad (a_i \le t \le a_{i+1})$$

with initial conditions $y(a_i) = y_{i-1}(a_i), y'(a_i) = y'_{i-1}(a_i), \dots, y^{(n-1)}(a_i) = y^{(n-1)}_{i-1}(a_i)$ where $y_{i-1}(t)$ is the solution of the problem P_{i-1} . The problem P_m is the initial value problem

$$y^{(n)} + p_1(t)y^{(n-1)} + \dots + p_n(t)y = f_n(t), \quad (a_m \le t)$$

 $y(a_m) = y_{m-1}(a_m), y'(a_m) = y'_{m-1}(a_m), \dots, y^{(n-1)}(a_m) = y^{(n-1)}_{m-1}(a_m)$. This problem has a unique solution $y = y_m(t)$ on $a_m \leq t$. The function y = y(t) defined by $y(t) = y_i(t)$ for $a_i \leq t \leq a_{i+1}$ and $y(t) = y_m(t)$ for $a_m \leq t$ is the required solution.

In order to work with piecewise continuous functions we introduce the unit step function

$$u(t) = \begin{cases} 0, & t < 0\\ 1, & 0 \le t \end{cases}$$

and $u_a(t) = u(t-a)$, its translate by $a \ge 0$. We have

$$u_a(t) = \begin{cases} 0, & t < a, \\ 1, & a \le t. \end{cases}$$

If f(t) is the piecewise continuous function defined by

$$f(t) = \begin{cases} f_0(t), & 0 \le t < a_1, \\ f_1(t), & a_1 \le t < a_2, \\ \vdots \\ f_m(t), & a_m < t. \end{cases}$$

then

$$f(t) = f_0(t) + (f_1(t) - f_0(t))u_{a_1}(t) + (f_2(t) - f_1(t))u_{a_2}(t) + \dots + (f_m(t) - f_{m-1}(t))u_{a_m}(t).$$

To compute the Laplace transform of this function we need the following formula

$$\mathcal{L}\{u_a(t)f(t)\} = e^{-as}\mathcal{L}\{f(t+a)\}.$$

For example, taking f(t) = 1, we get $\mathcal{L}\{u_a(t)\} = e^{-as}/s$. This formula is proved using the definition of the Laplace transform and a change of variable as follows

$$\mathcal{L}\{u_a(t)f(t)\} = \int_0^\infty e^{-st} u_a(t)f(t)dt$$
$$= \int_a^\infty e^{-st}f(t)dt$$
$$= \int_0^\infty s^{-s(t+a)}f(t+a)dt$$
$$= e^{-as}\int_0^\infty e^{-st}f(t+a)dt$$

This also yields a formula for the inverse Laplace tranform

$$\mathcal{L}^{-1}\{e^{-st}\mathcal{L}\{f(t)\}\} = u_a(t)f(t-a).$$

For example, $\mathcal{L}^{-1}\{e^{-as}/s\} = u_a(t)$.

With this machinery we can now solve the initial value problem

$$y'' + y = \begin{cases} 0, & 0 \le t < 1, \\ 1, & 1 \le t < 1 + 2\pi, \\ 0, & 1 + 2\pi \le t, \end{cases}$$

y(0) = y'(0) = 0. This problem can be written

$$y'' + y = u_1(t) - u_{1+2\pi}(t), \quad y(0) = y'(0) = 0.$$

Taking Laplace transforms, we get

$$(s^{2}+1)Y(s) = \frac{e^{-s}}{s} - \frac{e^{-(1+2\pi)s}}{s}$$

where $Y(s) = \mathcal{L}\{y(t)\}$. Solving for Y(s), we get

$$Y(s) = \frac{e^{-s}}{s(s^2+1)} - \frac{e^{-(1+2\pi)s}}{s(s^2+1)}$$
$$= e^{-s}(\frac{1}{s} - \frac{s}{s^2+1}) - e^{-(1+2\pi)s}(\frac{1}{s} - \frac{s}{s^2+1}).$$

Taking inverse Laplace transforms, we get

$$y(t) = u_1(t)(1 - \cos(t - 1)) - u_{1+2\pi}(t)(1 - \cos(t - 1)) = \begin{cases} 0, & 0 \le t < 1, \\ 1 - \cos(t - 1), & 1 \le t < 1 + 2\pi, \\ 0, & 1 + 2\pi \le t. \end{cases}$$