McGill University
Math 325A: Differential Equations
Notes for Lecture 18
Text: Ch. 7

In this lecture we will show how to use Laplace transforms in solving differential equations.
Consider the initial value problem

y' +y +y=sin(t), y0)=1, y'(0)=—1.
If Y(s) = L{y(t)}, we have
L{y' (1)} = sY(s) —y(0) = sY(s) =1, L{y"(1)} = 5>V (s) — sy(0) = y'(0) = s*Y(s) — 5 + 1.

Hence taking Laplace transforms of the DE, we get
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Using partial fractions we have
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Multiplying both sides by (s? + 1)(s® + s + 1) and collecting terms, we find
1=(A+C)s* +(B+C+ D)s*> + (A+C+ D)s+ B+ D.

Equating coefficients, we get A+C =0, B+C+D =0, A+C+ D =0, B+ D =1, from which
weget A=B=1,C = -1, D =0 so that
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we obtain
y(t) = 272 cos(V/3 t/2) — cos(t).

As a second example, consider the system
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with the initial conditions z(0) = 1, y(0) = 2. Taking Laplace transforms the system becomes

sX(s)—1=-2X(s)+Y(s),
sY(s) — 2= X(s) —2Y(s),

where X (s) = L{z(t)}, Y(s) = L{y(¢t)}. This linear system of equations for X (s), Y(s) can be

(s+2)X(s) =Y (s) =
—X(s)+ (s+2)Y(s)
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The determinant of the coefficient matrix is s2 +4s+3 = (s+1)(s + 3). Using Cramer’s rule we get
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The Laplace transform reduces the solution of differential equations to a partial fractions calcu-
lation. If F(s) = P(s)/Q(s) is a ratio of polynomials with the degree of P(s) less than the degree of
Q(s) then F(s) can be written as a sum of terms each of which corresponds to an irreducible factor
of Q(s). Each factor Q(s) of the form s — a contributes the terms
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where r is the multiplicity of the factor s —a. Each irreducible quadratic factor s+ as-+b contributes

the terms
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where r is the degree of multiplicity of the factor s + as + b.



