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Laplace Transforms
We begin our study of the Laplace Transform with a motivating example. This example illustrates

the type of problem that the Laplace transform was designed to solve.
A mass-spring system consisting of a single steel ball is suspended from the ceiling by a spring.

For simplicity, we assume that the mass and spring constant are 1. Below the ball we introduce an
electromagnet controlled by a switch. Assume that, we on, the electromagnet exerts a unit force on
the ball. After the ball is in equilibrium for 10 seconds the electromagnet is turned on for 2π seconds
and then turned off. Let y = y(t) be the downward displacement of the ball from the equilibrium
position at time t. To describe the motion of the ball using techniques previously developed we have
to divide the problem into three parts: (I) 0 ≤ t < 10; (II) 10 ≤ t < 10 + 2π; (III) 10 + 2π ≤ t. The
initial value problem determining the motion in part I is

y′′ + y = 0, y(0) = y′(0) = 0.

The solution is y(t) = 0, 0 ≤ t < 10. Taking limits as t → 10 from the left, we find y(10) = y′(10) =
0. The initial value problem determining the motion in part II is

y′′ + y = 1, y(10) = y′(10) = 0.

The solution is y(t) = 1− cos(t− 10), 10 ≤ t < 2π+10. Taking limits as t → 10+ 2π from the left,
we get y(10 + 2π) = y′(10 + 2π) = 0. The initial value problem for the last part is

y′′ + y = 0, y(10 + 2π) = y′(10 + 2π) = 0

which has the solution y(t) = 0, 10 + 2π ≤ t. Putting all this together, we have

y(t) =


0, 0 ≤ t < 10,

1− cos(t− 10), 10 ≤ t < 10 + 2π,

0, 10 + 2π ≤ t.

The function y(t) is continuous with continuous derivative

y′(t) =


0, 0 ≤ t < 10,

sin(t− 10), 10 ≤ t < 10 + 2π,

0, 10 + 2π ≤ t.

However the function y′(t) is not differentiable at t = 10 and t = 10 + 2π. In fact

y′′(t) =


0, 0 ≤ t < 10,

cos(t− 10), 10 < t < 10 + 2π,

0, 10 + 2π < t.

The left hand and right hand limits of f ′′(t) at t = 10 are 0 and 1 respectively. At t = 10+ 2π they
are 1 and 0. If we extend y′′(t) by using the left hand or righthand limits at 10 and 10 + 2π the



resulting function is not continuous. Such a function with only jump discontinuities is said to be
piecewise continuous. If we try to write the differential equation of the system we have

y′′ + y = f(t) =


0, 0 ≤ t < 10,

1, 10 ≤ t < 10 + 2π,

0, 10 + 2π ≤ t.

Here f(t) is piecewise continuous and any solution would also have y′′ piecewise continuous. By
a solution we mean any function y = y(t) satisfying the DE for those t not equal to the points of
discontinuity of f(t). In this case we have shown that a solution exists with y(t), y′(t) continuous.
In the same way, one can show that in general such solutions exist using the fundamental theorem.

What we want to describe now is a mechanism for doing such problems without having to divide
the problem into parts. This mechanism is the Laplace transform. Let f(t) be a function defined
for t ≥ 0. The function f(t) is said to be piecewise continuous if
(1) f(t) converges to a finite limit f(0+) as t → 0+
(2) for any c > 0, the left and right hand limits f(c−), f(c+) of f(t) at c exist and are finite.
(3) f(c−) = f(c+) = f(c) for every c > 0 except possibly a finite set of points or an infinite sequence
of points converging to +∞. Thus the only points of discontinuity of f(t) are jump discontinuities.
The function is said to be normalized if f(c) = f(c+) for every c ≥ 0.

The Laplace transform F (s) = L{f(t)} is the function of a new variable s defined by

F (s) =

∫ ∞

0

e−stf(t)dt = lim
N→+∞

∫ N

0

e−stf(t)dt.

An important class of functions for which the integral converges are the functions of exponential
order. The function f(t) is said to be of exponential order if there are constants a,M such that

|f(t)| ≤ Meat

for all t. the solutions of constant coefficient homogeneous DE’s are all of exponential order. The
convergence of the improper integral follows from∫ N

0

|e−stf(t)|dt ≤ M

∫ N

0

e−(s−a)tdt =
1

s− a
− e−(s−a)

s− a

which shows that the improper integral converges absolutely when s > a. It shows that F (s) → 0
as s → ∞. The calculation also shows that

L{eat} =
1

s− a

for s > a. Setting a = 0, we get L{1} = 1
s for s > 0.

The above holds when f(t) is complex valued and s = σ + iτ is complex. The integral exists in
this case for σ > a. For example, this yields

L{eit} =
1

s− i
, L{e−it} =

1

s+ i
.

Using the linearity property of the Laplace transform

L{af(t) + bf(t)} = aL{f(t)}+ bL{g(t)},



we find, using sin(t) = (eit − e−it)/2i, cos(t) = (eit + e−it)/2,

L{sin(bt)} =
1

2i
(

1

s− bi
− 1

s+ bi
) =

b

s2 + b2
,

L{cos(bt)} =
1

2
(

1

s− bi
+

1

s+ bi
) =

s

s2 + b2
,

for s > 0. The following two identities follow from the definition of the Laplace transform after a
change of variable.

L{eatf(t)}(s) = L{f(t)}(s− a), L{f(bt)}(s) = 1

b
L{f(t)}(s/b).

Using the first of these formulas, we get

L{eat sin(bt)} =
b

(s− a)2 + b2
, L{eat cos(t)} =

s− a

(s− a)2 + b2
.

The next formula will allow us to find the Laplace transform for all the functions that are annihilated
by a constant coefficient differential operator.

L{tnf(t)}(s) = (−1)n
dn

dsn
L{f(t)}(s).

For n = 1 this follows from the definition of the Laplace transform on differentiating with respect s
and taking the derivative inside the integral. The general case follows by induction. For example,
using this formula, we obtain using f(t) = 1

L{tn}(s) = − dn

dsn
1

s
=

n!

sn+1
.

With f(t) = sin(t) and f(t) = cos(t) we get

L{t sin(bt)}(s) = − d

ds

b

s2 + b2
=

2bs

(s2 + b2)2
,

L{t cos(bt)}(s) = − d

ds

s

s2 + b2
=

s2 − b2

(s2 + b2)2
=

1

s2 + b2
− 2b2

(s2 + b2)2
.

The next formula shows how to compute the Laplace transform of f(t) in terms of the Laplace
transform of f(t).

L{f ′(t)}(s) = sL{f(t)}(s)− f(0).

This follows from

L{f ′(t)}(s) =
∫ ∞

0

e−stf ′(t)dt = e−stf(t)|∞0 + s

∫ ∞

0

e−stf(t)dt = s

∫ ∞

0

e−stf(t)dt− f(0)

since e−stf(t) converges to 0 as t → +∞ in the domain of definition of the Laplace transform of
f(t). To ensure that the first integral is defined, we have to assume f ′(t) is piecewise continuous.
Repeated applications of this formula give

L{f (n)(t)}(s) = snL{f(t)}(s)− sn−1f(0)− sn−2f ′(0)− · · · − fn−1(0).



The following theorem is important for the application of the Laplace transform to differential
equations.

Theorem. If f(t), g(t) are normalized piecewise continuous functions of exponential order then

L{f(t)} = L{g(t)} =⇒ f = g.

If F (s) is the Laplace of the normalized piecewise continuous function f(t) of exponential order
then f(t) is called the inverse Laplace transform of F (s). This is denoted by

f(t) = L−1{F (s)}.

Note that the inverse Laplace transform is also linear. Using the Laplace transforms we found for
t sin(bt), t cos(bt) we find

L−1{ s

(s2 + b2)2
} =

1

2b
t sin(bt), L−1{ 1

(s2 + b2)2
} =

1

2b3
sin(bt)− 1

2b2
t cos(bt).


