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In this lecture we will give a few techniques for solving certain linear differential equations with
non-constant coefficients. We will restrict our attention to second order equations. However, the
techiques can be extended to higher order equations. The general second order linear DE is

p0(x)y′′ + p1(x)y′ + p2(x)y = q(x).

This equation is called a non-constant coefficient equation if at least one of the functions pi is not a
constant function.

Euler Equations

An important example of a non-constant linear DE is Euler’s equation

x2y′′ + axy′ + by = q(x), (x > 0)

where a, b are constants. This equation can be transformed into a constant coefficient DE by the
change of independent variable x = et. This is most easily seen by noting that
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If we set D = d
dt , we have d

dx = e−tD so that

d2

dx2
= e−tDe−tD = e−2tetDe−tD = e−2t(D − 1)D

so that x2y′′ = D(D − 1). By induction one easily proves that

dn
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= e−ntD(D − 1) · · · (D − n+ 1)

so that xny(n) = D(D − 1) · · · (D − n+ 1)(y). Euler’s equation then becomes

d2y

dt2
+ (a− 1)
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+ by = q(et),

a linear constant coefficient DE. Solving this for y as a function of t and then making the change of
variable t = ln(x), we obtain the solution of Euler’s equation for y as a function of x. This method
applies to the general n-th order Euler equation

xny(n) + a1x
n−1y(n−1) + · · ·+ any = q(x).

Example 1. Solve x2y′′ + xy′ + y = ln(x).



Making the change of variable x = et we obtain

d2y

dt2
+ y = t

whose general solution is y = A cos(t) +B sin(t) + t. Hence

y = A cos(ln(x)) +B sin(ln(x)) + ln(x)

is the general solution of the given DE.

Example 2. Solve x3y′′′ + 2x2y′′ + xy′ − y = 0, (x > 0).
This is a third order Euler equation. Making the change of variable x = et, we get

(D(D − 1)(D − 2) + 2D(D − 1) +D − 1)(y) = (D − 1)(D+1)(y) = 0

which has the general solution y = c1e
t + c2 sin(t) + c3 cos(t). Hence

y = c1x+ c2 sin(ln(x)) + c3 cos(ln(x))

is the general solution of the given DE.

Exact Equations

The DE p0(x)y′′ + p1(x)y′ + p2(x)y = q(x) is said to be exact if

p0(x)y′′ + p1(x)y′ + p2(x)y =
d

dx
(A(x)y′ +B(x)).

In this case the given DE is reduced to solving the linear DE

A(x)y′ +B(x) =
∫
q(x)dx+ C

a linear first order DE. The exactness condition can be expressed in operator form as

p0D
2 + p1D + p2 = D(AD +B).

Since d
dx (A(x)y′ + B(x)y) = A(x)y′′ + (A′(x) + B(x))y′ + B′(x)y, the exactness condition holds if

and only if A(x), B(x) satisfy

A(x) = p0(x), B(x) = p1(x)− p′0(x), B′(x) = p2(x).

Since the last condition holds if and only if p′1(x)− p′′0(x) = p2(x), we see that the given DE is exact
if and only if

p′′0 − p′1 + p2 = 0

in which case
p0(x)y′′ + p1(x)y′ + p2(x)y =

d

dx
(p0(x)y′ + (p1(x)− p′0(x))y).

Example. Solve the DE xy′′ + xy′ + y = x, (x > 0).
This is an exact equation since the given DE can be written

d

dx
(xy′ + (x− 1)y) = x.



Integrating both sides, we get
xy′ + (x− 1)y = x2/2 +A

which is a linear DE. The solution of this DE is left as an exercise.

Reduction of Order

If y1 is a non-zero solution of a homogeneous linear n-th order DE, one can always find a second
solution of the form y = C(x)y1 where C ′(x) satisfies a homogeous linear DE of order n− 1. Since
we can choose C ′(x) 6= 0 we find in this way a second solution y2 = C(x)y1 which is not a scalar
multiple of y1. In particular for n = 2, we obtain a fundamental set of solutions y1, y2. Let us prove
this for the second order DE

p0(x)y′′ + p1(x)y′ + p2(x)y = 0.

If y1 is a non-zero solution we try for a solution of the form y = C(x)y1. Substituting y = C(x)y1

in the above we get

p0(x)(C ′′(x)y1 + 2C ′(x)y′1 + C(x)y′′1 ) + p1(x)(C ′(x)y1 + C(x)y′1) + p2(x)C(x)y1 = 0.

Simplifying, we get
p0y1C

′′(x) + (p0y
′
1 + p1y1)C ′(x) = 0

since p0y
′′
1 + p1y

′
1 + p2y1 = 0. This is a linear first order homogeneous DE for C ′(x). Note that to

solve it we must work on an interval where y1(x) 6= 0. However, the solution found can always be
extended to the places where y1(x) = 0 in a unique way by the fundamental theorem.

The above procedure can also be used to find a particular solution of the non-homogenous DE
p0(x)y′′ + p1(x)y′ + p2(x)y = q(x) from a non-zero solution of p0(x)y′′ + p1(x)y′ + p2(x)y = 0

Example 1. Solve y′′ + xy′ − y = 0.
Here y = x is a solution so we try for a solution of the form y = C(x)x. Substituting in the given

DE, we get
C ′′(x)x+ 2C ′(x) + x(C ′(x)x+ C(x))− C(x)x = 0

which simplifies to
xC ′′(x) + (x2 + 2)C ′(x) = 0.

Solving this linear DE for C ′(x), we get

C ′(x) = Ae−x
2/2/x2

so that
C(x) = A

∫
dx

x2ex2/2
+B

Hence the general solution of the given DE is

y = A1x+A2x

∫
dx

x2ex2/2
.

Example 2. Solve y′′ + xy′ − y = x3ex.
By the previous example, the general solution of the associated homogeneous equation is

y = A1x+A2x

∫
dx

x2ex2/2
.



Substituting yp = xC(x) in the given DE we get

xC ′′(x) + (x2 + 2)C ′(x) = x3ex.

Solving for C ′(x) we obtain C ′(x) = x3ex. This gives

C(x) = (x3 − 3x2 + 6x− 6)ex +Bx.

We can therefore take
yp = (x4 − 3x3 + 6x2 − 6x)ex

so that the general solution of the given DE is

y = A1x+A2x

∫
dx

x2ex2/2
+ (x4 − 3x3 + 6x2 − 6x)ex.


