McGill University
Math 325A: Differential Equations
Notes for Lecture 14
Text: Ch. 4

In this lecture we will give a few techniques for solving certain linear differential equations with
non-constant coefficients. We will restrict our attention to second order equations. However, the
techiques can be extended to higher order equations. The general second order linear DE is

po(x)y” + pr(x)y + p2(x)y = q(z).

This equation is called a non-constant coefficient equation if at least one of the functions p; is not a
constant function.

Euler Equations

An important example of a non-constant linear DE is Euler’s equation
2y +axy' +by = q(z), (z>0)

where a, b are constants. This equation can be transformed into a constant coefficient DE by the
change of independent variable x = e’. This is most easily seen by noting that
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If we set D = 4 we have L = =D so that
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so that #2y” = D(D — 1). By induction one easily proves that
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so that 2"y = D(D —1)--- (D — n+ 1)(y). Euler’s equation then becomes
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a linear constant coefficient DE. Solving this for y as a function of ¢ and then making the change of
variable ¢t = In(x), we obtain the solution of Euler’s equation for y as a function of . This method
applies to the general n-th order Euler equation

x”y(") + alxnfly(”*l) + o+ anly = q(x)

Example 1. Solve z%y” + zy’ +y = In(x).
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Making the change of variable x = e’ we obtain
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whose general solution is y = A cos(t) + Bsin(t) 4+ t. Hence
y = Acos(In(z)) + Bsin(In(x)) + In(z)

is the general solution of the given DE.

Example 2. Solve z3y"" + 222%y" + 2y —y =0, (x> 0).
This is a third order Euler equation. Making the change of variable z = ¢!, we get

(D(D—-1)(D—2)+2D(D—1)+D —1)(y) = (D —-1)(D*t1)(y) =0
which has the general solution y = cyet + ¢z sin(t) + ¢3 cos(t). Hence
y = 12 + cosin(In(z)) + ¢35 cos(In(z))

is the general solution of the given DE.

Exact Equations

The DE po(z)y” + p1(x)y’ + p2(x)y = q(z) is said to be exact if

pol@)y” +pr (@) +pala)y = () + B(x)).

In this case the given DE is reduced to solving the linear DE

Ay + B(a) = [ a(a)da +C
a linear first order DE. The exactness condition can be expressed in operator form as
poD? 4+ p1D + po = D(AD + B).

Since L (A(z)y' + B(z)y) = A(z)y” + (A'(z) + B(x))y' + B'(2)y, the exactness condition holds if
and only if A(x), B(z) satisfy

A(z) =po(z), B(x)=pi(z) —py(x), B'(z)=pa(z).
Since the last condition holds if and only if p} (z) — p{j(x) = p2(x), we see that the given DE is exact
if and only if
Po—Pi+p2=0
in which case

pol@y” + pa(a)y/ + pa(e)y = e (pol@)y’ + (91 (x) — P (2))y).

Example. Solve the DE zy” + 2y’ +y =z, (x> 0).
This is an exact equation since the given DE can be written

Loy -1 =



Integrating both sides, we get
vy +(x—Dy=2*/2+A

which is a linear DE. The solution of this DE is left as an exercise.

Reduction of Order

If y; is a non-zero solution of a homogeneous linear n-th order DE, one can always find a second
solution of the form y = C(z)y; where C’(x) satisfies a homogeous linear DE of order n — 1. Since
we can choose C'(z) # 0 we find in this way a second solution yo = C(z)y; which is not a scalar
multiple of y;. In particular for n = 2, we obtain a fundamental set of solutions y, y2. Let us prove
this for the second order DE

po(2)y" + p1(2)y’ + p2(z)y = 0.
If y; is a non-zero solution we try for a solution of the form y = C(x)y;. Substituting y = C(z)y1
in the above we get

po(2)(C"(@)y1 + 20" (2)y; + C(2)yy) + p1(2)(C'(2)y1 + C(2)yy) + p2(2)C(z)y1 = 0.
Simplifying, we get
Poy1C” () + (poys + p1y1)C'(2) =0

since poy] + p1y] + p2y1 = 0. This is a linear first order homogeneous DE for C’(x). Note that to
solve it we must work on an interval where y;(x) # 0. However, the solution found can always be
extended to the places where y1(z) = 0 in a unique way by the fundamental theorem.

The above procedure can also be used to find a particular solution of the non-homogenous DE
po(2)y” + p1(x)y’ + p2(x)y = ¢(x) from a non-zero solution of po(x)y” + p1(x)y’ + p2(x)y =0

Example 1. Solve v + 2y’ —y = 0.
Here y = z is a solution so we try for a solution of the form y = C(z)z. Substituting in the given
DE, we get
C"(z)x + 20" (x) + 2(C'(x)z + C(z)) — C(z)r =0

which simplifies to
xC"(z) + (2 + 2)C’(x) = 0.

Solving this linear DE for C’(x), we get
C'(z) = Ae™" /2 /22
so that i
C(z) = A/ popyE) +B
Hence the general solution of the given DE is
y:A1LE+A2$/%.

Example 2. Solve y" + zy’ — y = z3e®.
By the previous example, the general solution of the associated homogeneous equation is

dz
y:AllE-‘-AQZE/W



Substituting y, = *C(x) in the given DE we get
xC"(x) + (2% + 2)C' (z) = x3e”.
Solving for C’(x) we obtain C’(z) = z3e®. This gives
C(z) = (2 — 32% + 62 — 6)e” + Bu.

We can therefore take
yp = (z* — 32° + 627 — 62)e”

so that the general solution of the given DE is

dx I
y:A1x+A2I/W+(z4_3$3+6,’£2—6$)6 .



