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Variation of Parameters

Variation of parameters is method for producing a particular solution of a special kind for the
general linear DE in normal form

L(y) = y(n) + a1(x)y(n−1) + · · ·+ an(x)y = b(x)

from a fundamental set y1, y2, . . . , yn of solutions of the associated homogeneous equation. In this
method we try for a solution of the form

yP = C1(x)y1 + C2(x)y2 + · · ·+ Cn(x)yn.

Then y′P = C1(x)y′1 +C2(x)y′2 + · · ·+Cn(x)y′n +C ′1(x)y1 +C ′2(x)y2 + · · ·+C ′n(x)yn and we impose
the condition

C ′1(x)y1 + C ′2(x)y2 + · · ·+ C ′n(x)yn = 0.

Then y′P = C1(x)y′1 + C2(x)y′2 + · · ·+ Cn(x)y′n and hence

y′′P = C1(x)y′′1 + C2(x)y′′2 + · · ·+ Cn(x)y′′n + C ′1(x)y′1 + C ′2(x)y′2 + · · ·+ C ′n(x)y′n.

Again we impose the condition C ′1(x)y′1 + C ′2(x)y′2 + · · ·+ C ′n(x)y′n = 0 so that

y′′P = C1(x)y′′1 + C2(x)y′′2 + · · ·+ Cn(x)y′n.

We do this for the first n− 1 derivatives of y so that for 1 ≤ k ≤ n− 1

y
(k)
P = C1(x)y(k)

1 + C2(x)y(k)
2 + · · ·Cn(x)y(k)

n ,

C ′1(x)y(k)
1 + C ′2(x)y(k)

2 + · · ·+ C ′n(x)y(k)
n = 0.

Now substituting yP , y′P , . . . , y
(n−1)
P in L(y) = b(x) we get

C1(x)L(y1)+C2(x)L(y2)+ · · ·+Cn(x)L(yn)+C ′1(x)y(n−1)
1 +C ′2(x)y(n−1)

2 + · · ·+C ′n(x)y(n−1)
n = b(x).

But L(yi) = 0 for 1 ≤ k ≤ n so that

C ′1(x)y(n−1)
1 + C ′2(x)y(n−1)

2 + · · ·+ C ′n(x)y(n−1)
n = b(x).

We thus obtain the system of n linear equations for C ′1(x), . . . , C ′n(x)

C ′1(x)y1 + C ′2(x)y2 + · · ·+ C ′n(x)yn = 0,
C ′1(x)y′1 + C ′2(x)y′2 + · · ·+ C ′n(x)y′n = 0,

...

C ′1(x)y(n−1)
1 + C ′2(x)y(n−1)

2 + · · ·+ C ′n(x)y(n−1)
n = b(x).

If we solve this system using Cramer’s Rule and integrate, we find

Ci(x) =
∫ x

x0

(−1)n+iWib(t)
W

dt



where W = W (y1, y2, . . . , yn) and Wi = W (y1 . . . , ŷi, . . . , yn) where theˆmeans that yi is omitted.
Note that the particular solution yP found in this way satisfies

yP (x0) = y′P (x0) = · · · = y
(n−1)
P = 0.

The point x0 is any point in the interval of continuity of the ai(x) and b(x). Note that yP is a linear
function of the function b(x).

Example. Find the general solution of y′′ + y = 1/x on x > 0.
The general solution of y′′ + y = 0 is y = c1 cos(x) + c2 sin(x). Using variation of parameters

with y1 = cos(x), y2 = sin(x), b(x) = 1/x and x0 = 1, we have W = 1, W1 = sin(x), W2 = cos(x)
and we obtain the particular solution yp = C1(x) cos(x) + C2(x) sin(x) where

C1(x) = −
∫ x

1

sin(t)
t

dt, C2(x) =
∫ x

1

cos(t)
t

dt.

The general solution of y′′ + y = 1/x on x > 0 is therefore

y = c1 cos(x) + c2 sin(x)− (
∫ x

1

sin(t)
t

dt) cos(x) + (
∫ x

1

cos(t)
t

dt) sin(x).

When applicable, the annihilator method is easier as one can see from the DE y′′+ y = ex. Here
it is immediate that yp = ex/2 is a particular solution while variation of parameters gives

yp = −(
∫ x

0

etsin(t)dt) cos(x) + (
∫ x

0

et cos(t)dt) sin(x).

The integrals can be evaluated using integration by parts:∫ x

0

et cos(t)dt = ex cos(x)− 1 +
∫ x

0

et sin(t)dt

= ex cos(x) + ex sin(x)− 1−
∫ x

0

et cos(t)dt

which gives ∫ x

0

et cos(t)dt = (ex cos(x) + ex sin(x)− 1)/2∫ x

0

et sin(t)dt = ex sin(x)−
∫ x

0

et cos(t)dt = (ex sin(x)− ex cos(x) + 1)/2

so that after simplification yp = ex/2− cos(x)/2− sin(x)/2.

We now give an application of the theory of second order DE’s to the description of the motion of
a simple mass-spring mechanical system with a damping device. We assume that the damping force
is proportional to the velocity of the mass. If there are no external forces we obtain the differential
equation

m
d2x

dt2
+ b

dx

dt
+ kx = 0



where x = x(t) is the displacement from equilibrium at time t of the mass of m > 0 units, b ≥ 0 is
the damping constant and k > 0 is the spring constant. In operator form with D = d

dt this DE is,
after normalizing,

(D2 +
b

m
D +

k

m
)(x) = 0.

The characteristic polynomial r2 + (b/m)r + k/m has discriminant

∆ = (b2 − 4km)/m2.

If b2 < 4km we have ∆ < 0 and the characteristic polynomial factorizes in the form (r+b/2m)2 +ω2

with

ω =
√

4km− b2/2m =

√
k

m
− (b/2m)2.

In this case the characteristic polynomial has complex roots −b/2m ± iω and the general solution
of the DE is

y = e−bt/2m(A cos(ωt) +B sin(ωt) = Ce−bt/2m sin(ωt+ θ)

where C =
√
A2 +B2 and 0 ≤ θ ≤ 2π defined by cos(θ) = A/C, sin(θ) = B/C. The angle θ is

called the phase. In this case we see that the mass oscillates with frequency ω/2π and decreasing
amplitude. If b = 0 there is no damping and the mass oscillates with frequency ω/2π and constant
amplitude; such motion is called simple harmonic.

If b2 ≥ 4km we have ∆ ≥ 0 and so the characteristic polynomial has real roots

r1 = −b/2m+
√
b2 − 4km/2m, r2 = −b/2m−

√
b2 − 4km/2m

which are both negative. If r1 = r2 = r the general solution of our DE is

y = Aert +Btert

and if r1 6= r2 the general solution is

y = Aer1t +Ber2t.

In both cases y → 0 as t → ∞. In the second case we have what is called over damping and in
the first case the over damping is said to be critical. In each the mass returns to its equilibrium
position without oscillations.

Suppose now that our mass-spring system is subject to an external force so that our DE now
becomes

m
d2x

dt2
+ b

dx

dt
+ kx = F (t).

The function F (t) is called the forcing function and measures the magnitude and direction of the
external force. We consider the important special case where the forcing function is harmonic

F (f) = F0 cos(γt), F0 > 0 a constant.

We also assume that we have underdamping with damping constant b > 0. In this case the DE has
a particular solution of the form

yp = A1 cos(γt) +A2 sin(γt).



Substituting the the DE and simplifying, we get

((k −mγ2)A1 + bγA2) cos(γt) + (−bγA1 + (k −mγ2)A2) sin(γt) = F0 cos(γt).

Setting the corresponding coefficients on both sides equal, we get

(k −mγ2)A1 + bγA2 = F0,

−bγA1 + (k −mγ2)A2 = 0.

Solving for A1, A2 we get

A1 =
F0(k −mγ2)

(k −mγ2)2 + b2γ2
, A2 =

F0bγ

(k −mγ2)2 + b2γ2

and

yp =
F0

(k −mγ2)2 + b2γ2
((k −mγ2) cos(γt) + bγ sin(γt))

=
F0√

(k −mγ2)2 + b2γ2
sin(γt+ φ).

The general solution of our DE is then

y = Ce−bt/2m sin(ωt+ θ) +
F0√

(k −mγ2)2 + b2γ2
sin(γt+ φ).

Because of damping the first term tends to zero and is called the transient part of the solution. The
second term, the steady-state part of the solution, is due to the presence of the forcing function
F0 cos(γt). It is harmonic with the same frequency γ/2π but is out of phase with it by an angle
φ− π/2. The ratio of the magnitudes

M(γ) =
1√

(k −mγ2)2 + b2γ2

is called the gain factor. The graph of the function M(γ) is called the resonance curve. It has a
maximum of

1

b
√

k
m −

b2

4m2

when γ = γr =
√

k
m −

b2

2m2 . The frequency γr/2π is called the resonance frequency of the system.
When γ = γr the system is said to be in resonance with the external force. Note that M(γr) gets
arbitrarily large as b→ 0. We thus see that the system is subject to large oscillations if the damping
constant is very small and the forcing function has a frequency near the resonance frequency of the
system.

The above applies to a simple LRC electrical circuit where the differential equation for the current
I is

L
d2I

dt2
+R

dI

dt
+ I/C = F (t)

where L is the inductance, R is the resistance and C is the capacitance. The resonance phenomenon
is the reason why we can send and receive and amplify radio transmissions sent simultaneously but
with different frequencies.


