McGill University
Math 325A: Differential Equations
Notes for Lecture 12
Text: Ch. 4,6
Constant Coefficient Linear Differential Equations

In this lecture we will show how to solve the general linear constant coefficient differential equation
y(’ﬂ) + aly(nil) + oo + anly = b(l’)

Here a1, as,...,a, are constants (independent of z); hence the name constant coefficient linear DE.
This DE can be written in operator form as P(D)(y) = b(x) with

P(D)=D"+4+a, D" ' +... +a;.

The method of solution will depend on the factorization of this polynomial. Any polynomial P(X)
with real coefficients can be factored into distinct factors of the form (X —a)™ or ((X —a)? + b*)™
with b # 0. The following result tells us how to solve the homogeneous DE P(D)(y) = 0 once we
have this factorization.

Theorem

(a) ker((D —a)™) = span(e®®, xe®™, ... ™ 1)

(b) ker((D — a)? + b?)™) = span(e®® f(x), ze®* f(x),..., 2™ 1™ f(x)), f(z) = cos(bx) or sin(bx).
(¢) If P(X),Q(X) are relatively prime polynomials with constant coefficients then

ker(P(D)Q(D)) = ker(P(D)) + ker(Q(D)) = {y1 + y2 | y1 € ker(P(D)), y2 € ker(Q(D))}-

Proof. The proof of (a) follows from the fact that (D — a)™ = e**D™e~%*. For the proof of (c) we
first note that since P(D)Q(D) = Q(D)P(D) we have

ker(P(D)) C ker(P(D)Q(D)), ker(Q(D)) C ker(P(D)Q(D))

and hence ker(P(D)) +ker(Q(D)) C ker(P(D)Q(D)). To prove the reverse inclusion we use the fact
that, since P(X), Q(X) have no common factors, there are polynomials A(X), B(X) with

1 = A(X)Q(X) + B(X)P(X).
Then y = A(D)Q(D)(y) + B(D)P(D)(y). If y € ker(P(D)Q(D)) then
y1 = A(D)Q(D)(y) € ker(P(D)), y2 = B(D)P(D)(y) € ker(Q(D))

and y = y1 + ya.
We now give two proofs of (b). The first proof uses the identities

(D — a)? 4+ b?) (2% cos(bx)) = k(k — 1)z %€ cos(bx) — bka*~1e” sin(bx),
(D — a)* + bv*)(z%e sin(bx)) = k(k — 1)zF 2 sin(bx) + bka*~1e cos(bx).
Let fr, = 2%e® cos(bx), gr = 2% sin(bx) and let

Sk = Spa‘n(f(%g()a f17gl7 CERE fk—lagk—l)



for k > 1, Sy = {0}. Then the above formulas show that
(D —a)* +b*)(Sg) € Sp_1 for k> 1.
Hence ((D — a)? + b)(S;) € Sp which shows that

S = span(fo, 9o, f1,91,- - fr—1, 9m—1) € Sm.

To show linear independence of fo, 9o, f1,91,-- -5 fimn—1,Gm—1 SUppose
Aofo+ Bogo+ ... Am—1fm—1+ Bm_1gm-1 = 0.
Applying ((D — a)? 4+ b*)™~! to both sides we get
CmApm—1e" cos(bz) + CpBp—1e" sin(bx) = 0 for m odd
CnBm—1€% cos(bx) — CppApm—1e** sin(bz) =0 for m even
with C,, = (m — 1)1b™~1 #£ 0. Tt follows that
Ap—1c08(bx) + Byy—1 sin(bz) = 0 or By,—1 cos(bx) — Ap,—1sin(bx) =0
which implies that A,,_; = B;,—1 = 0 since cos(bx), sin(bz) are linearly independent. We now have
Aofo+ Bogo+ ... Am—a2fm—2 + Bm—2gm—2 = 0.

Proceeding inductively, we find that all the A;, B; are zero. It follows that

f07907f1>91;-~-7fm71agm71

are a fundamental set of solutions of ((D — a)? + b?)™(y) = 0 which is what we wanted to prove.
Our second proof of (b) uses complex numbers. We first extend D to complex valued functions
f(@) = fi(x) +ifa(x) by
D(f) = D(f1) +iD(f2).

It is easy to show that D has all the usual properties:

D(af +bg) = aD(f) +bD(g9), D(fg)= D(f)g+ fD(g)

for any complex numbers a,b. Moreover, if we define

2 n

P z z
e:1+z+7+...+7+...
2! n!

for any complex number z = x + iy we have e*T% = e?e¥ and

e = e%e™ = e”(cos(y) + isin(y)).
Moreover, one easily proves that D(e*”) = ae®® for any complex number « and that D — o =
e**De~**. Now the proofs of (a) and (b) carry over word for word to the complex case. In
particular, since

(D —a)?*+b*=(D—a)(D—a)



where o = a 4 ib, @ = a — bi (the complex conjugate of «), we have
ker(((D — a)? + b*)™) = ker((D — a)™(D —@)™) = ker((D — a)™) + ker((D —a@)™).

Thus the complex solutions of ((D—a)2+b?)™ are spanned by the functions z*e®*(cos(bz) £ sin(bx))
with 0 < k < m — 1 whose real and imaginary parts are the functions

zFe® cos(bx), zFe®sin(bz) (1 <k<m—1).

If P(X) is a polynomial with real coefficients then f(x) = fi(x) + if2(x) satisfies P(D)(f) = 0 iff
P(D)(f1) = P(D)(f2) = 0. Thus the above 2n functions span the complex solutions and hence the
real solutions also. QED

Example Solve the initial value problem
y" =3y" + 7y —5y =0, y(0)=1,9'(0) =y"(0) =0.
The DE in operator form is (D? — 3D? + 7D — 3)(y) = 0. Since
X3 3X2 47X —5=(X-1)(X2-2X+5)= (X - 1)((X —1)2+4)
we have ker(D? — 3D? + 7D —5) = ker(D — 1) + ker((D — 1) + 4) which gives the general solution
y = c1€” + coe” cos(2z) + cze” sin(2x).

If we want y to satisfy y(0) = 1,4/(0) = 0,y”(0) = 0 we must have ¢; + co = 1, ¢1 + ¢c2 + 2¢3 = 0,
¢1 — 3ca +4cs = 0 and hence ¢; =5/4,c0 = —1/4,¢3 = —1/2.
Solve the initial value problem

y"' =3y + 7y —5y=x+e", y(0)=1,9(0)=y"(0)=0.

This DE is non-homogeneous. The associated homogeneous equation was solved in the previous
example so we only have to find a particular solution in order to solve it. To find one we use
the so-called annihilator method to find a homogeneous DE satisfied by y. This homogeneous
DE is obtained by applying to both sides of the non-homogeneous DE a linear constant coefficient
differential operator having the function on the right-hand side in its kernel. In this case z + e” is
in the kernel of D?(D — 1). Hence

D*(D —1)*((D—1)* +4)(y) =0
which yields y = Az + B + Cze® + c1e® + coe® cos(2x) + cze® sin(2x). This shows that there is a
particular solution of the form yp = Az + B 4+ Cxe® which is obtained by discarding the terms in
the solution space of the associated homogeneous DE. Substituting this in the original DE we get

y" =3y + 7y —5y=7A—-5B —5Ax — Ce”

which is equal to 4 € if and only if TA—5B =0, —=5A =1, —C = 1 so that A = —1/5, B = —7/25,
C = —1. Hence the general solution is

y = c1e” + coe” cos(2x) + cze” sin(2x) — /5 — 7/25 — xe”.



To satisfy the initial condition y(0) = 0,4'(0) = y”(0) = 0 we must have

c1+ co = 32/25,
¢1 + c2 +2c3 = 6/5,
c1 — 3¢y +4c3 =2
which has the solution ¢; = 3/2,¢co = —11/50,¢3 = —1/25.

In the next lecture we will see how to handle the cases where the annihilator method does not
apply.



