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Linear Differential Equations

In this lecture we will develop the theory of linear differential equations. The starting point is
the fundamental existence theorem for the general n-th order ODE L(y) = b(x), where

L(y) = Dn + a1(x)Dn−1 + · · ·+ an(x).

We will also assume that a0(x), a1(x), . . . , an(x), b(x) are continous functions on the interval I.

Theorem. For any x0 ∈ I, the initial value problem

L(y) = b(x) y(x0) = d1, y
′(x0) = d2, . . . , y

(n−1)(x0) = dn

has a unique solution for any d1, d2, . . . , dn ∈ R.

If V is the solution space of the associated homogeneous DE L(y) = 0, the transformation

T : V → R
n,

defined by T (y) = (y(x0), y′(x0), . . . , y(n−1)(x0)), is linear transformation of the vector space V into
R
n since

T (ay + bz) = aT (y) + bT (z).

Moreover, the fundamental theorem says that T is one-to-one (T (y) = T (z) =⇒ y = z) and onto
(every d ∈ Rn is of the form T (y) for some y ∈ V ). A linear transformation which is one-to-one and
onto is called an isomorphism. Isomorphic vector spaces have the same properties.

Corollary. dim(V ) = n.

This means that there exists y1, y2, . . . , yn ∈ V such that every y ∈ V can be uniquely written
in the form

y = c1y1 + c2y2 + . . . cnyn

with c1, c2, . . . , cn ∈ R. Such a sequence of elements of a vector space V is called a basis for V . In
the context of DE’s it is also known as a fundamental set. The number of elements in a basis for
V is called the dimension of V and is denoted by dim(V ). If

e1 = (1, 0, . . . , 0), e2 = (0, 1, . . . , 0), . . . , en = (0, 0, . . . , 1)

is the standard basis of Rn and yi is the unique yi ∈ V with T (yi) = ei then y1, y2, . . . , yn is a basis
for V . This follows from the fact that

T (c1y1 + c2y2 + · · ·+ cnyn) = c1T (y1) + c2T (y2) + · · ·+ cnT (yn).

A set of vectors v1, v2, . . . , vn in a vector space V is said to span or generate V if every v ∈ V
can be written in the form

v = c1v1 + c2v2 + · · ·+ cnvn

with c1, c2, . . . , cn ∈ R. The set

span(v1, v2, . . . , vn) = {c1v1 + c2v2 + · · ·+ cnvn | c1, c2, . . . , cn ∈ R}



consisting of all possible linear combinations of the vectors v1, v2, . . . , vn form a subspace of V called
the span of v1, v2, . . . , vn. Then V = span(v1, v2, . . . , vn) if and only if v1, v2, . . . , vn spans V .

The vectors v1, v2, . . . , vn are said to be linearly independent if

c1v1 + c2v2 + . . . cnvn = 0

implies that the scalars c1, c2, . . . , cn are all zero. A basis can also be characterized as a linearly in-
dependent generating set since the uniqueness of representation is equivalent to linear independence.
More precisely,

c1v1 + c2v2 + · · ·+ cnvn = c′1v1 + c′2v2 + · · ·+ c′nvn =⇒ ci = c′i for all i

if and only if v1, v2, . . . , vn are linearly independent.
As an example of a linearly independent set of functions consider

cos(x), cos(2x), cos(3x).

To prove their linear independence, suppose that c1, c2, c3 are scalars such that

c1 cos(x) + c2 cos(2x) + c3 sin(3x) = 0

for all x. Then setting x = 0, π/2, π, we get

c1 + c2 = 0,
−c2 − c3 = 0,
−c1 + c2 = 0

from which c1 = c2 = c3 = 0.
An example of a linearly dependent set would be sin2(x), cos2(x), cos(2x) since

cos(2x) = cos2(x)− sin2(x)

implies that cos(2x) + sin2(x) + (−1) cos2(x) = 0.
Another criterion for linear independence of functions involves the Wronskian. If y1, y2, . . . , yn

are n functions which have derivatives up to order n − 1 then the Wronskian of these functions is
the determinant

W = W (y1, y2, . . . , yn) =
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If W (x0) 6= 0 for some point x0, then y1, y2, . . . , yn are linearly independent. This follows from the
fact that W (x0) is the determinant of the coefficient matrix of the linear homogeneous system of
equations in c1, c2, . . . , cn obtained from the dependence relation

c1y1 + c2y2 + · · ·+ cnyn = 0

and its first n− 1 derivatives by setting x = x0.



For example, if y1 = cos(x), cos(2x), cos(3x) we have

W =

∣∣∣∣∣∣
cos(x) cos(2x) cos(3x)
− sin(x) −2 sin(2x) −3 sin(3x)
− cos(x) −4 cos(2x) −9 cos(3x)

∣∣∣∣∣∣
and W (π/4)) = −8 which implies that y1, y2, y3 are linearly independent. Note that W (0) = 0 so
that you cannot conclude linear dependence from the vanishing of the Wronskian at a point. This
is not the case if y1, y2, . . . , yn are solutions of an n-th order linear homogeneous ODE.

Theorem. If y1, y2, . . . , yn are solutions of the linear ODE L(y) = 0, the following are equivalent:

1. y1, y2, . . . , yn is a basis for ker(L);

2. y1, y2, . . . , yn are linearly independent;

3. y1, y2, . . . , yn generate ker(L);

4. W (y1, y2, . . . , yn) 6= 0 at some point x0;

5. W (y1, y2, . . . , yn) is never zero.

Proof. The equivalence of 1, 2, 3 follows from the fact that ker(L) is isomorphic to Rn. The rest of
the proof follows from the fact that if the Wronskian were zero at some point x0 the homogeneous
system of equations

c1y1(x0) + c1y2(x0) + · · ·+ cnyn(x0) = 0
c1y
′
1(x0) + c1y

′
2(x0) + · · ·+ cny

′
n(x0) = 0

...

c1y
(n−1)
1 (x0) + c1y

(n−1)
2 (x0) + · · ·+ cny

(n−1)
n (x0) = 0

would have a non-zero solution for c1, c2, . . . , cn which would imply that

c1y1 + c2y2 + · · ·+ cnyn = 0

and hence that y1, y2, . . . , yn are not linearly independent. QED

The fact that the Wronskian of n solutions of the n-th order linear ODE L(y) = 0 is either
identically zero or vanishes nowhere also follows from the fact that

dW

dx
= −a1(x)W

from which
W (x) = W (x0)e−

∫ x
x0
a1(t)dt

.

From the above we see that to solve the n-th order linear DE L(y) = b(x) we first find linear n
independent solutions y1, y2, . . . , yn of L(y) = 0. Then, if yP is a particular solution of L(y) = b(x),
the general solution of L(y) = b(x) is

y = c1y1 + c2y2 + · · ·+ cnyn + yP .

The initial conditions y(x0) = d1, y
′(x0) = d2, . . . , y

(n−1)
n (x0) = dn then determine the constants

c1, c2, . . . , cn uniquely.


