McGill University
Math 325A: Differential Equations
Notes for Lecture 11
Text: Ch. 4,6
Linear Differential Equations

In this lecture we will develop the theory of linear differential equations. The starting point is
the fundamental existence theorem for the general n-th order ODE L(y) = b(z), where

L(y) = D" 4 a1 (x) D" 4+ - + a,(z).
We will also assume that ag(z),a1(x),... ,an(x),b(x) are continous functions on the interval I.

Theorem. For any x( € I, the initial value problem
L(y) = b(x)  y(xo) = dv, ¥ (x0) = da, ...,y (wo) = dy
has a unique solution for any dy,ds,... ,d, € R.
If V is the solution space of the associated homogeneous DE L(y) = 0, the transformation
T:V —>R",

defined by T(y) = (y(20), ¥’ (o), - ..,y (x0)), is linear transformation of the vector space V into
R"™ since

T(ay + bz) = aT(y) + bT ().
Moreover, the fundamental theorem says that T' is one-to-one (T'(y) = T'(2) = y = z) and onto

(every d € R™ is of the form T'(y) for some y € V). A linear transformation which is one-to-one and
onto is called an isomorphism. Isomorphic vector spaces have the same properties.

Corollary. dim(V) = n.

This means that there exists y1,ys2,... ,yn € V such that every y € V can be uniquely written
in the form

y=cy1+cy2+...cplYn

with ¢1,¢a,... ,¢, € R. Such a sequence of elements of a vector space V is called a basis for V. In
the context of DE’s it is also known as a fundamental set. The number of elements in a basis for
V is called the dimension of V' and is denoted by dim(V). If

e1=(1,0,...,0), e2=(0,1,...,0),... ,en = (0,0,...,1)

is the standard basis of R™ and y; is the unique y; € V with T'(y;) = e; then y1,ys, ... ,yn is a basis
for V. This follows from the fact that

T(01y1 + C2Y2 +--+ Cnyn) = CIT(yl) + CZT(yQ) + 4+ ch(yn)

A set of vectors v1,vs,...,v, in a vector space V is said to span or generate V if every v € V
can be written in the form
UV = C1V1 + CoVg + -+ + CrUp

with ¢1,¢0,...,¢, € R. The set

span(vy, va, ... ,Un) = {c1v1 + covo + -+ + CcuUp | €1,C2, ... 0 € R}



consisting of all possible linear combinations of the vectors v, vs, ... , v, form a subspace of V called
the span of vy, vs,... ,v,. Then V = span(vy,va,...,v,) if and only if vy, vs,... ,v, spans V.
The vectors vy, v, ... ,v, are said to be linearly independent if

c1v1 + covg +...cpv, =0

implies that the scalars ¢1,co, ... ,c, are all zero. A basis can also be characterized as a linearly in-
dependent generating set since the uniqueness of representation is equivalent to linear independence.
More precisely,

C1v1 + CoU + -+ Cpvp = vy + Chvg + -+ vy = ¢; = ¢, for all i

if and only if vy, vs, ... ,v, are linearly independent.
As an example of a linearly independent set of functions consider

cos(x), cos(2z), cos(3z).
To prove their linear independence, suppose that ci, co, c3 are scalars such that
1 cos(z) + ¢z cos(2x) + ez sin(3x) =0

for all . Then setting x = 0,7/2, 7, we get

c1+co =0,
—02—03:0,
—c1+c2=0

from which ¢; = ¢3 = ¢3 = 0.
An example of a linearly dependent set would be sin?(x), cos?(z), cos(2z) since

cos(2x) = cos?(z) — sin?(x)

implies that cos(2x) + sin’(x) + (—1) cos?(z) = 0.

Another criterion for linear independence of functions involves the Wronskian. If y1,ys2,... ,yn
are n functions which have derivatives up to order n — 1 then the Wronskian of these functions is
the determinant

Y1 Y2 Yn

Y1 Yo oo U
W:W(ylay27"'7yn): . . :

1 -1 1

If W(xo) # 0 for some point xg, then y1,ys,. .. ,y, are linearly independent. This follows from the
fact that W (zg) is the determinant of the coefficient matrix of the linear homogeneous system of
equations in ¢y, ¢a, ... , ¢, obtained from the dependence relation

cayr+coys+ -+ cpyn =0

and its first n — 1 derivatives by setting = = x¢.



For example, if y; = cos(z), cos(2z), cos(3x) we have

cos(x) cos(2x) cos(3x)
W = |—sin(x) —2sin(2x) —3sin(3x)
—cos(x) —4cos(2x) —9cos(3z)

and W (m/4)) = —8 which implies that y;,ys2,y3 are linearly independent. Note that W (0) = 0 so
that you cannot conclude linear dependence from the vanishing of the Wronskian at a point. This
is not the case if y1, 92, ... ,yn are solutions of an n-th order linear homogeneous ODE.

Theorem. If y1,ys,... ,y, are solutions of the linear ODE L(y) = 0, the following are equivalent:
1. y1,92,...,Yn is a basis for ker(L);
2. Y1,Y2,--- ,Yn are linearly independent;
3. Y1,Y2,--. ,Yn generate ker(L);
4. W(y1,y2,--- ,Yn) # 0 at some point zp;
5. W(y1,y2,--.,Yn) is never zero.
Proof. The equivalence of 1,2, 3 follows from the fact that ker(L) is isomorphic to R™. The rest of

the proof follows from the fact that if the Wronskian were zero at some point zy the homogeneous
system of equations

c1y1(wo) + c1y2(zo) + - + cpyn(wo) =
ey (x0) + c1ya(xo) + - + enyy (w0) = 0

" (o) + 1y (@0) + -+ + eny D (o) = 0

would have a non-zero solution for ¢y, co, ... , ¢, which would imply that
cayr+cys+ -+ cpyn =0
and hence that y1,ys, ...,y are not linearly independent. QED

The fact that the Wronskian of n solutions of the n-th order linear ODE L(y) = 0 is either
identically zero or vanishes nowhere also follows from the fact that

aw
E = —al(I‘)W

from which )
W (z) = W(wo)e o @O,

From the above we see that to solve the n-th order linear DE L(y) = b(x) we first find linear n
independent solutions y1, Y2, ... ,y, of L(y) = 0. Then, if yp is a particular solution of L(y) = b(x),
the general solution of L(y) = b(x) is

Yy =c1y1 +c2y2 + -+ Cp¥Yn + Yp.

The initial conditions y(xg) = dy,y'(xg) = da, ... ,yén_l)(xo) = d,, then determine the constants

c1,Co, ... ,Cp uniquely.



