McGill University Math 325A: Differential Equations Notes for Lecture 11 Text: Ch. 4,6 Linear Differential Equations

In this lecture we will develop the theory of linear differential equations. The starting point is the fundamental existence theorem for the general *n*-th order ODE L(y) = b(x), where

$$L(y) = D^{n} + a_{1}(x)D^{n-1} + \dots + a_{n}(x).$$

We will also assume that $a_0(x), a_1(x), \ldots, a_n(x), b(x)$ are continous functions on the interval I.

Theorem. For any $x_0 \in I$, the initial value problem

$$L(y) = b(x)$$
 $y(x_0) = d_1, y'(x_0) = d_2, \dots, y^{(n-1)}(x_0) = d_n$

has a unique solution for any $d_1, d_2, \ldots, d_n \in \mathbb{R}$.

If V is the solution space of the associated homogeneous DE L(y) = 0, the transformation

$$T: V \to \mathbb{R}^n$$
,

defined by $T(y) = (y(x_0), y'(x_0), \dots, y^{(n-1)}(x_0))$, is linear transformation of the vector space V into \mathbb{R}^n since

$$T(ay + bz) = aT(y) + bT(z).$$

Moreover, the fundamental theorem says that T is one-to-one $(T(y) = T(z) \implies y = z)$ and onto (every $d \in \mathbb{R}^n$ is of the form T(y) for some $y \in V$). A linear transformation which is one-to-one and onto is called an **isomorphism**. Isomorphic vector spaces have the same properties.

Corollary. dim(V) = n.

This means that there exists $y_1, y_2, \ldots, y_n \in V$ such that every $y \in V$ can be uniquely written in the form

$$y = c_1 y_1 + c_2 y_2 + \dots c_n y_n$$

with $c_1, c_2, \ldots, c_n \in \mathbb{R}$. Such a sequence of elements of a vector space V is called a **basis** for V. In the context of DE's it is also known as a **fundamental set**. The number of elements in a basis for V is called the dimension of V and is denoted by dim(V). If

$$e_1 = (1, 0, \dots, 0), e_2 = (0, 1, \dots, 0), \dots, e_n = (0, 0, \dots, 1)$$

is the standard basis of \mathbb{R}^n and y_i is the unique $y_i \in V$ with $T(y_i) = e_i$ then y_1, y_2, \ldots, y_n is a basis for V. This follows from the fact that

$$T(c_1y_1 + c_2y_2 + \dots + c_ny_n) = c_1T(y_1) + c_2T(y_2) + \dots + c_nT(y_n).$$

A set of vectors v_1, v_2, \ldots, v_n in a vector space V is said to **span** or **generate** V if every $v \in V$ can be written in the form

$$v = c_1 v_1 + c_2 v_2 + \dots + c_n v_n$$

with $c_1, c_2, \ldots, c_n \in \mathbb{R}$. The set

$$span(v_1, v_2, \dots, v_n) = \{c_1v_1 + c_2v_2 + \dots + c_nv_n \mid c_1, c_2, \dots, c_n \in \mathbb{R}\}$$

consisting of all possible linear combinations of the vectors v_1, v_2, \ldots, v_n form a subspace of V called the **span** of v_1, v_2, \ldots, v_n . Then $V = \operatorname{span}(v_1, v_2, \ldots, v_n)$ if and only if v_1, v_2, \ldots, v_n spans V.

The vectors v_1, v_2, \ldots, v_n are said to be **linearly independent** if

$$c_1v_1 + c_2v_2 + \dots + c_nv_n = 0$$

implies that the scalars c_1, c_2, \ldots, c_n are all zero. A basis can also be characterized as a linearly independent generating set since the uniqueness of representation is equivalent to linear independence. More precisely,

$$c_1v_1 + c_2v_2 + \dots + c_nv_n = c'_1v_1 + c'_2v_2 + \dots + c'_nv_n \implies c_i = c'_i$$
 for all i

if and only if v_1, v_2, \ldots, v_n are linearly independent.

As an example of a linearly independent set of functions consider

$$\cos(x), \cos(2x), \cos(3x).$$

To prove their linear independence, suppose that c_1, c_2, c_3 are scalars such that

$$c_1 \cos(x) + c_2 \cos(2x) + c_3 \sin(3x) = 0$$

for all x. Then setting $x = 0, \pi/2, \pi$, we get

$$c_1 + c_2 = 0,$$

 $-c_2 - c_3 = 0,$
 $-c_1 + c_2 = 0$

from which $c_1 = c_2 = c_3 = 0$.

An example of a linearly dependent set would be $\sin^2(x), \cos^2(x), \cos(2x)$ since

$$\cos(2x) = \cos^2(x) - \sin^2(x)$$

implies that $\cos(2x) + \sin^2(x) + (-1)\cos^2(x) = 0.$

Another criterion for linear independence of functions involves the Wronskian. If y_1, y_2, \ldots, y_n are *n* functions which have derivatives up to order n-1 then the Wronskian of these functions is the determinant

$$W = W(y_1, y_2, \dots, y_n) = \begin{vmatrix} y_1 & y_2 & \dots & y_n \\ y'_1 & y'_2 & \dots & y'_n \\ \vdots & \vdots & & \vdots \\ y_1^{(n-1)} & y_2^{(n-1)} & \dots & y_n^{(n-1)} \end{vmatrix}$$

If $W(x_0) \neq 0$ for some point x_0 , then y_1, y_2, \ldots, y_n are linearly independent. This follows from the fact that $W(x_0)$ is the determinant of the coefficient matrix of the linear homogeneous system of equations in c_1, c_2, \ldots, c_n obtained from the dependence relation

$$c_1y_1 + c_2y_2 + \dots + c_ny_n = 0$$

and its first n-1 derivatives by setting $x = x_0$.

For example, if $y_1 = \cos(x), \cos(2x), \cos(3x)$ we have

$$W = \begin{vmatrix} \cos(x) & \cos(2x) & \cos(3x) \\ -\sin(x) & -2\sin(2x) & -3\sin(3x) \\ -\cos(x) & -4\cos(2x) & -9\cos(3x) \end{vmatrix}$$

and $W(\pi/4) = -8$ which implies that y_1, y_2, y_3 are linearly independent. Note that W(0) = 0 so that you cannot conclude linear dependence from the vanishing of the Wronskian at a point. This is not the case if y_1, y_2, \ldots, y_n are solutions of an *n*-th order linear homogeneous ODE.

Theorem. If y_1, y_2, \ldots, y_n are solutions of the linear ODE L(y) = 0, the following are equivalent:

- 1. y_1, y_2, \ldots, y_n is a basis for ker(L);
- 2. y_1, y_2, \ldots, y_n are linearly independent;
- 3. y_1, y_2, \ldots, y_n generate ker(L);
- 4. $W(y_1, y_2, \ldots, y_n) \neq 0$ at some point x_0 ;
- 5. $W(y_1, y_2, \ldots, y_n)$ is never zero.

Proof. The equivalence of 1, 2, 3 follows from the fact that $\ker(L)$ is isomorphic to \mathbb{R}^n . The rest of the proof follows from the fact that if the Wronskian were zero at some point x_0 the homogeneous system of equations

$$c_1y_1(x_0) + c_1y_2(x_0) + \dots + c_ny_n(x_0) = 0$$

$$c_1y_1'(x_0) + c_1y_2'(x_0) + \dots + c_ny_n'(x_0) = 0$$

$$\vdots$$

$$c_1y_1^{(n-1)}(x_0) + c_1y_2^{(n-1)}(x_0) + \dots + c_ny_n^{(n-1)}(x_0) = 0$$

would have a non-zero solution for c_1, c_2, \ldots, c_n which would imply that

$$c_1y_1 + c_2y_2 + \dots + c_ny_n = 0$$

QED

and hence that y_1, y_2, \ldots, y_n are not linearly independent.

The fact that the Wronskian of n solutions of the *n*-th order linear ODE L(y) = 0 is either identically zero or vanishes nowhere also follows from the fact that

$$\frac{dW}{dx} = -a_1(x)W$$

from which

$$W(x) = W(x_0)e^{-\int_{x_0}^x a_1(t)dt}.$$

From the above we see that to solve the *n*-th order linear DE L(y) = b(x) we first find linear *n* independent solutions y_1, y_2, \ldots, y_n of L(y) = 0. Then, if y_P is a particular solution of L(y) = b(x), the general solution of L(y) = b(x) is

$$y = c_1 y_1 + c_2 y_2 + \dots + c_n y_n + y_P$$

The initial conditions $y(x_0) = d_1, y'(x_0) = d_2, \ldots, y_n^{(n-1)}(x_0) = d_n$ then determine the constants c_1, c_2, \ldots, c_n uniquely.