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Notes for Lecture 1

Text: Sections 1.1, 1.2

An Ordinary Differential Equation (ODE) is an equation involving the derivatives of an
unknown function y of a single variable x. Any function y = f(x) which satisfies this equation is
called a solution of the ODE. For example, y = e2x is a solution of the ODE

y′ = 2y

and y = sin(x2) is a solution of the ODE

xy′′ − y′ + 4x3y = 0.

An ODE is said to be of order n if y(n) is the highest order derivative occurring in the equation.
The simplest first order ODE is y′ = g(x). The most general form of an n-th order ODE is

F (x, y, y′, . . . , y(n)) = 0

with F a function of n + 2 variables x, u0, u1, . . . , un. The equations

xy′′ + y = x3, y′ + y2 = 0, y′′′ + 2y′ + y = 0

are examples of ODE’s of second order, first order and third order respectively with respectively

F (x, u0, u1, u2) = xu2 + u0 − x3, F (x, u0, u1) = u1 + u2
0, F (x, u0, u1, u2, u3) = u3 + 2u1 + u0.

If the function F is linear in the variables u0, u1, . . . , un the ODE is said to be linear. If, in addition,
F is homogeneous then the ODE is said to be homogeneous. The first of the above examples above
is linear are linear, the second is non-linear and the third is linear and homogeneous. The general
n-th order linear ODE can be written

an(x)
dny
dxn + an−1(x)

dn−1y
dxn−1 + · · ·+ a1(x)

dy
dx

+ a0(x)y = b(x).

This DE is homogeneous if and only if b(x) ≡ 0. Linear homogeneous equations have the important
property that linear combinations of solutions are also solutions. In other words, if y1, y2, . . . , ym
are solutions and c1, c2, . . . , cm are constants then

c1y1 + c2y2 + · · ·+ cmym

is also a solution.
A Partial Differential Equation (PDE) is an equation involving the partial derivatives of a

function of more than one variable. The concepts of linearity and homogeneity can be extended to
PDE’s. The general second order linear PDE in two variables x, y is

a(x, y)
∂2u
∂x2 + b(x, y)

∂2u
∂x∂y

+ c(x, y)
∂2u
∂y2 + d(x, y)

∂u
∂x

+ e(x, y)
∂u
∂y

+ f(x, y)u = g(x, y).

Laplace’s equation
∂2u
∂x2 +

∂2u
∂y2 = 0



is a linear, homogeneous PDE of order 2. The functions u = log(x2 + y2), u = xy, u = x2 − y2 are
examples of solutions of Laplace’s equation. We will not study PDE’s systematically in this course.

By the general solution of a differential equation we mean the set of all solutions, i.e., the
set of all functions which satisfy the equation. For example, the general solution of the differential
equation y′ = 3x2 is y = x3 + C where C is an arbitrary constant. The constant C is the value
of y at x = 0. This initial condition completely determines the solution. More generally, one
easily shows that given a, b there is a unique solution y of the differential equation with y(a) = b.
Geometrically, this means that the one-parameter family of curves y = x2 + C do not intersect one
another and they fill up the plane R2.

An n-th order ODE of the form y(n) = G(x, y, y′, . . . , yn−1) is said to be in normal form. If we
introduce dependant variables y1 = y, y2 = y′, . . . , yn = yn−1 we obtain the equivalent system of
first order equations

y′1 = y2,
y′2 = y3,
...

y′n = G(x, y1, y2, . . . , yn).

For example, the ODE y′′ = y is equivalent to the system

y′1 = y2,

y′2 = y1.

In this way the study of n-th order equations can be reduced to the study of systems of first order
equations. Systems of equations arise in the study of the motion of particles. For example, if P (x, y)
is the position of a particle of mass m at time t, moving in a plane under the action of the force field
(f(x, y), g(x, y), we have

m
d2x
dt2

= f(x, y),

m
d2y
dt2

= g(x, y).

This is a second order system.
The general first order ODE in normal form is

y′ = F (x, y).

If F and ∂F
∂y are continuous one can show that, given a, b, there is a unique solution with y(a) = b.

Describing this solution is not an easy task and there are a variety of ways to do this. The dependence
of the solution on initial conditions is also an important question as the initial values may be only
known approximately.

The non-linear ODE yy′ = 4x is not in normal form but can be brought to normal form

y′ =
4x
y

.

by dividing both sides by y. No solutions are lost since no solution satisfies y(x) = 0 if x 6= 0.
Here F (x, y) = 4x/y is not continuous on the line y = 0 so that the above existence and uniqueness



theorem does not apply if b = 0; in fact, there is no solution with y(a) = 0 if a 6= 0. If we integrate
both sides of the original DE and simplify we get the one-parameter family

y2 = 4x2 + C

which defines y implicitly as a function of x. If C = 0, we have y = ±x so that there are two
solutions y = x and y = −x passing through (0, 0).

If (a, b) is a point on the curve f(x, y) = C with ∂f
∂y (a, b) 6= 0, there is a function y = φ(x) with

φ(a) = b and f(x, φ(x)) = 0 for all x sufficiently near a. Differentiating f(x, y) = C implicitly with
respect to x, we get

y′ = −
∂f
∂x
∂f
∂x

for all x, y sufficiently near (a, b). The solutions of this DE satisfy the equation f(x, y)=C.


