McGill University
Math 325A: Differential Equations
Notes for Lecture 1

Text: Sections 1.1, 1.2

An Ordinary Differential Equation (ODE) is an equation involving the derivatives of an
unknown function y of a single variable . Any function y = f(z) which satisfies this equation is
called a solution of the ODE. For example, y = €27 is a solution of the ODE

/

y =2y
and y = sin(2?) is a solution of the ODE
xy” — 1y + 423y = 0.

An ODE is said to be of order n if 4™ is the highest order derivative occurring in the equation.
The simplest first order ODE is 3y’ = g(x). The most general form of an n-th order ODE is

F(x7y7 y/7 MR y(n)) = 0

with F' a function of n + 2 variables z, ug, u1, ..., u,. The equations

1"

vy +y=2°, Y +yP=0, ¥y +2 +y=0
are examples of ODE’s of second order, first order and third order respectively with respectively
F(2,u0,u1,us) = 2ug +ug — 2%, F(z,ug,u1) = up +us, F(x,up,u1,us,us) = us + 2u; + ug.

If the function F' is linear in the variables ug, u1, ..., u, the ODE is said to be linear. If, in addition,
F' is homogeneous then the ODE is said to be homogeneous. The first of the above examples above
is linear are linear, the second is non-linear and the third is linear and homogeneous. The general
n-th order linear ODE can be written

ny n—ly dy
an(2)—= 4+ an_1(x)——= + -+ a1(z)=— + ap(x)y = b(x).
n(2) T + an1(2) @) + agf@)y = b()
This DE is homogeneous if and only if b(z) = 0. Linear homogeneous equations have the important
property that linear combinations of solutions are also solutions. In other words, if y1,92,...,¥m
are solutions and ¢y, co, ..., ¢, are constants then

Cc1Y1 +Cc2y2 + -+ CmYm

is also a solution.

A Partial Differential Equation (PDE) is an equation involving the partial derivatives of a
function of more than one variable. The concepts of linearity and homogeneity can be extended to
PDE’s. The general second order linear PDE in two variables z,y is

0%u 0%u 0%u ou ou

Laplace’s equation
0%u n 0%u ~0
oz%  Ay? B



is a linear, homogeneous PDE of order 2. The functions u = log(z? + 4?), u = zy, u = 2% — y? are

examples of solutions of Laplace’s equation. We will not study PDE’s systematically in this course.

By the general solution of a differential equation we mean the set of all solutions, i.e., the
set of all functions which satisfy the equation. For example, the general solution of the differential
equation y' = 322 is y = 23 + C where C is an arbitrary constant. The constant C' is the value
of y at x = 0. This initial condition completely determines the solution. More generally, one
easily shows that given a,b there is a unique solution y of the differential equation with y(a) = b.
Geometrically, this means that the one-parameter family of curves y = 22 4+ C do not intersect one
another and they fill up the plane R2.

An n-th order ODE of the form y™ = G(x,y,v/,...,y" ") is said to be in normal form. If we
introduce dependant variables y1 = y, 42 = ¢/,...,yn = y" ! we obtain the equivalent system of
first order equations

Y1 = Yo,
yé = Y3,

y;z = G(.’IJ, Y1, Y2, - - - vyn)
For example, the ODE 3" = y is equivalent to the system
!
yl = 3/27
Ya = Y1
In this way the study of n-th order equations can be reduced to the study of systems of first order

equations. Systems of equations arise in the study of the motion of particles. For example, if P(z,y)
is the position of a particle of mass m at time ¢, moving in a plane under the action of the force field

(f(z,y),g(z,y), we have

d%x

My = f(z,y),
d?y _

m—s = 9(x,y).

This is a second order system.
The general first order ODE in normal form is

y = F(z,y).

If F and %—F are continuous one can show that, given a,b, there is a unique solution with y(a) = b.
Describing this solution is not an easy task and there are a variety of ways to do this. The dependence
of the solution on initial conditions is also an important question as the initial values may be only
known approximately.

The non-linear ODE y3’ = 4z is not in normal form but can be brought to normal form

iz
Y

Y

by dividing both sides by y. No solutions are lost since no solution satisfies y(z) = 0 if x # 0.
Here F(x,y) = 4x/y is not continuous on the line y = 0 so that the above existence and uniqueness



theorem does not apply if b = 0; in fact, there is no solution with y(a) = 0 if a # 0. If we integrate
both sides of the original DE and simplify we get the one-parameter family

P =42 +C

which defines y implicitly as a function of z. If C = 0, we have y = £x so that there are two
solutions y = = and y = —x passing through (0, 0).

If (a,b) is a point on the curve f(z,y) = C with g—i(m b) # 0, there is a function y = ¢(z) with
¢(a) = b and f(z,¢(x)) = 0 for all  sufficiently near a. Differentiating f(z,y) = C implicitly with
respect to x, we get

for all z,y sufficiently near (a,b). The solutions of this DE satisfy the equation f(z,y)=C.



