McGill University Math 319B: Partial Differential Equations Linear Second Order PDE's

The general second order linear PDE in two independent variables x, y is

$$A\frac{\partial^2 u}{\partial x^2} + B\frac{\partial^2 u}{\partial x \partial y} + C\frac{\partial^2 u}{\partial y^2} + D\frac{\partial u}{\partial x} + E\frac{\partial u}{\partial y} + Fu = G,$$

where A, B, C, D, E, F, G are functions of x, y and at least one of $A, B, C, D \neq 0$. The PDE is said to be homogeneous if G = 0. If A, B, C, D, E, F are constants then the PDE is said to be a constant coefficient PDE.

Linear second order PDE's are classified according to the discriminant

$$\Delta = B^2 - AC.$$

The PDE is said to be **hyperbolic** if $\Delta > 0$, **elliptic** if $\Delta < 0$ and **parabolic** if $\Delta = 0$. For example, the PDE's

$$\frac{\partial^2 u}{\partial x^2} - \frac{\partial^2 u}{\partial y^2} + cu = d, \quad \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + cu = d, \quad \frac{\partial^2 u}{\partial x^2} - k\frac{\partial u}{\partial y} + cu = d$$

are respectively, hyperbolic, elliptic and parabolic. Conversely, the general second order linear constant coefficient PDE can be brought to this standard form by a change of variables, dependent and independent. This result is known as the **Classification Theorem** and we now outline its proof.

The change of independent variables will be the linear change of variable

$$\xi = ax + by$$
$$\eta = cx + dy.$$

Using the chain rule, we get

$$\frac{\partial u}{\partial x} = \frac{\partial u}{\partial \xi} \frac{\partial \xi}{\partial x} + \frac{\partial u}{\partial \eta} \frac{\partial \eta}{\partial x} = a \frac{\partial u}{\partial \xi} + c \frac{\partial u}{\partial \eta}$$
$$\frac{\partial u}{\partial y} = \frac{\partial u}{\partial \xi} \frac{\partial \xi}{\partial y} + \frac{\partial u}{\partial \eta} \frac{\partial \eta}{\partial y} = b \frac{\partial u}{\partial \xi} + d \frac{\partial u}{\partial \eta}.$$

Notice that the coefficient matrix for $\frac{\partial u}{\partial \xi}$, $\frac{\partial u}{\partial \eta}$ in terms of $\frac{\partial u}{\partial x}$, $\frac{\partial u}{\partial y}$ is the transpose of the coefficient matrix for ξ , η in terms of x, y. Using such a change of variable we can always make B = 0 in the new equation. To see how, we let $X = \frac{\partial}{\partial x}$, $Y = \frac{\partial u}{\partial y}$. Then

$$A\frac{\partial^2}{\partial x^2} + B\frac{\partial^2}{\partial x \partial y} + C\frac{\partial^2}{\partial y^2} = AX^2 + BXY + CY^2.$$

If $A \neq 0$ we complete the square in X

$$AX^{2} + BXY + CY^{2} = A(X + BY/2A)^{2} + (C - B^{2}/4A)Y^{2} = A(X + BY/2A)^{2} - \Delta Y^{2}/4A.$$

After possibly multiplying the original equation by -1, we can assume A > 0. We now make a change of variable

$$\xi = ax + by$$
$$\eta = cx + dy.$$

so that

$$\frac{\partial}{\partial \xi} = \sqrt{A}(X + BY/2A) = \sqrt{A}\frac{\partial}{\partial x} + \frac{B}{2\sqrt{A}}\frac{\partial}{\partial y}$$
$$\frac{\partial}{\partial \eta} = \sqrt{\Delta/A}Y = \sqrt{\Delta/A}\frac{\partial}{\partial y}$$

in the case $\Delta > 0$,

$$\frac{\partial}{\partial \xi} = \sqrt{A}(X + BY/2A) = \sqrt{A}\frac{\partial}{\partial x} + \frac{B}{2\sqrt{A}}\frac{\partial}{\partial y}$$
$$\frac{\partial}{\partial \eta} = \sqrt{-\Delta/4A}Y = \sqrt{-\Delta/A}\frac{\partial}{\partial y}$$

in the case $\Delta < 0$ and

$$\begin{split} \frac{\partial}{\partial \xi} &= \sqrt{A}(X+BY/2A) = \sqrt{A}\frac{\partial}{\partial x} + \frac{B}{2\sqrt{A}}\frac{\partial}{\partial y} \\ \frac{\partial}{\partial \eta} &= \frac{\partial}{\partial y} \end{split}$$

in the case $\Delta = 0$. With this change of variable

$$A\frac{\partial^2 u}{\partial x^2} + B\frac{\partial^2 u}{\partial x \partial y} + C\frac{\partial^2 u}{\partial y^2}$$

becomes

$$\frac{\partial^2 u}{\partial \xi^2} - \frac{\partial^2 u}{\partial \eta^2}, \quad \frac{\partial^2 u}{\partial \xi^2} + \frac{\partial^2 u}{\partial \eta^2}, \quad \frac{\partial^2 u}{\partial \xi^2}$$

according as $\Delta > 0$, $\Delta < 0$, $\Delta = 0$. If A = 0 but $C \neq 0$ we complete the square in y. If A = C = 0, we use the fact that $4XY = (X + Y)^2 - (X - Y)^2$.

We are therefore reduced to the case A = 1, B = 0, $C = \pm 1$ or C = 0. We can get rid of a first order derivative, say $X = \frac{\partial}{\partial \xi}$, using

$$X^2 + DX = (X + D/2)^2 - D^2/4$$

which can be simplified using

$$X + a = e^{-a\xi} X e^{a\xi}$$

where a = D/2. This can be also be done for the first order derivative in η in the elliptic or hyperbolic case. Using this, we get in the elliptic case

$$X^{2}u + Y^{2}u + DXu + EYu = e^{-a\xi}X^{2}e^{a\xi}u + e^{-b\eta}Y^{2}e^{b\eta}u - a^{2} - b^{2},$$

where b = E/2. Multiplying on the left by $e^{a\xi+b\eta}$ and setting $v = e^{a\xi+b\eta}u$, we get

$$\frac{\partial^2 v}{\partial \xi^2} + \frac{\partial^2 v}{\partial \eta^2} + dv$$

with $d = -a^2 - b^2$. The case $\Delta < 0$ is handled similarly. In the case $\Delta = 0$ we can get rid of Xu but not Yu. Then, if Yu appears, the standard form can be achieved with k = 1, c = 0. The proof of this is left to the reader.

 $\mathbf{Example} \ \mathbf{Consider} \ \mathbf{the} \ \mathbf{PDE}$

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial x \partial y} - \frac{\partial^2 u}{\partial y^2} + \frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} = 0$$

which can be written as L(u) = 0 with

$$L = X^{2} + XY - Y^{2} + X + Y = (X + Y/2)^{2} - 5Y^{2}/4 + X + Y.$$

We now set

$$\frac{\partial}{\partial \xi} = \frac{\partial}{\partial x} + \frac{1}{2} \frac{\partial}{\partial y}$$
$$\frac{\partial}{\partial \eta} = \frac{\sqrt{5}}{2} \frac{\partial}{\partial y}$$

which can be achieved by the change of variables

$$x = \xi$$
$$y = \frac{1}{2}\xi + \frac{\sqrt{5}}{2}\eta.$$

Our differential equation becomes

$$\frac{\partial^2 u}{\partial \xi^2} - \frac{\partial^2 u}{\partial \eta^2} + \frac{\partial u}{\partial \xi} + \frac{1}{\sqrt{5}} \frac{\partial u}{\partial \eta} = 0.$$

If we now make the change of variable

$$v = e^{\xi/2 - \eta/2\sqrt{5}}u,$$

the above equation becomes, after multiplying by $e^{\xi/2 - \eta/2\sqrt{5}}$,

$$\frac{\partial^2 v}{\partial \xi^2} - \frac{\partial^2 v}{\partial \eta^2} - 4v/5 = 0.$$