
Notes on Linear Operators

Theorem 1. Let T : U → V be a linear mapping. Then U is finite-dimensional iff Ker(T) and
Im(T) are finite-dimensional in which case

dim(U) = dim(Ker(T)) + dim(Im(T)).

Proof. (⇒) If V is finite-dimensional then so is Ker(T) since a subspace of a finite-dimensional vector
space is also finite-dimensional. Also, if U = Span(e1, . . . , en), then Im(T) = Span(T(e1), . . . ,T(en))
so that the image of T is also finite-dimensional. Now if f1, . . . , fs is a basis for Ker(T) and we
complete f1, . . . , fs to a basis f1, . . . , fs, fs+1, . . . fs+r of V then we claim that T (fs+1), . . . , T (fs+r)
is a basis for Im(T). Indeed, they span Im(T) since T (f1) = · · ·T (fs) = 0, and if a1T (fs+1) + · · ·+
crT (fs+r) = 0 we have T (a1fs+1 +· · · arfs+r) = 0 which implies a1fs+1 +· · · arfs+r = b1f1 +· · · bsfs.
Bringing all terms to the left side we get a dependence relation among f1, . . . , fr+s. Since f ′is are
linearly independent we get a1 = a2 = · · · = as = 0. This yields dim(U) = s + r = dim(ker(T )) +
dim(Im(T)).

(⇐) Now suppose Ker(T) and Im(T) are finite-dimensional. Let f1, . . . , fs be a basis for Ker(T)
and let h1, . . . hr be a basis for Im(T). We have hi = T (fs+i) with fs+1, . . . , fs+r ∈ U . We claim
that f1, . . . , fs+r is a basis for U . Indeed, if u ∈ U , then T (u) = as+1T (fs+1 + · · · + as+rT (fs+r)
which implies that u− as+1fs+1 − · · · − as+rfs+r ∈ Ker(T) and hence that

u− as+1fs+1 − · · · − as+rfs+r = a1f1 + · · ·+ ssfs

which gives u = a1f1 + · · · as+rfs+r and hence that f1, . . . fs+r generate U . To show linear inde-
pendence of these vectors suppose that a1f1 + · · · as+rfs+r = 0. Applying T to both sides yields
as1h1 + · · · as+rhr = 0 which gives as+1 = · · · = as+r = 0 since h1, . . . hr are linearly independent.
But then a1f1 + · · · asfs = 0 which gives a1 = · · · = as = 0 by the fact that f1,
dots, fs are linearly independent.Thus dim(U) = r + s = dim(Ker(T)) + dim(Im(T)).

Corollary 2. Let T : U → V ,S : V → W be linear mappings such that Ker(S) and Ker(T) are
finite-dimensional. Then

dim Ker(ST) = dim Ker(T) + dim(Ker(S) ∩ Im(T)).

Proof. We first note that Ker(T) ⊆ ker(ST) and that

u ∈ ker(ST ) ⇐⇒ ST (u) = 0 ⇐⇒ T (u) ∈ Ker(S) ∩ Im(T).

Now let T0 : Ker(ST) → W be the linear mapping defined by restriction of T to Ker(ST). Then
Ker(T0) = Ker(T) and Im(T0) = Ker(S) ∩ im(T) which yields the result.

Corollary 3. dim(ker(ST )) ≤ dim(ker(S)) + dim(ker(T )) with equality if Ker(S) ⊆ Im(T), in par-
ticular, if T is surjective.

Theorem 4. Let T be a linear operator on a vector space V and let a1, a2, . . . , ak be distinct scalars
such that dim(Ker(T− ai)ni) is finite-dimensional for 1 ≤ i ≤ k. Then

Ker((T− a1)n1(T− a2)n2 · · · (T− ak)nk) = Ker(T− a1)n1 + Ker(T− a2)n2 + · · ·+ Ker(T− ak)nk .

Proof. Let W = Ker((T− a1)n1(T− a2)n2 · · · (T− ak)n
k) and let Wi = Ker(T− ai)ni . We first prove

that dim(W1 + · · · + Wk) = dim(W1) + · · ·dim(Wk). For this is suffices to prove that if wi ∈ Wk

with w1 + w2 + · · ·wk = 0 then w1 = w2 = · · ·wk = 0. Let Si be the product of the operators
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(T − aj)nj with j 6= i. Then, applying Si to both sides of w1 + · · ·wk = 0, we get Si(wi) = 0 since
Si(wj) = 0 for j 6= i. Since Si(Wi) ⊆Wi, the restriction of Si to Wi is a linear operator on Wi and
Si =

∏
j 6=i(Tj−aj)nj , where Tj is the restriction of T to Wj . That wi = 0 follows from the following

Lemma since

Lemma 5. If S is a linear operator on a vector space W and a is a scalar such that (S − a)n = 0
then S − b is invertible for every b 6= a.

Proof. We first prove this in the case a = 0, b = 1. Then Sn = 0 so that

(1− S)(1 + S + S2 + · · ·+ Sn−1 = 1 + S + S2 + · · ·Sn−1 − S − S2 − · · · − Sk−1 = 1.

Since two polynomials in S commute we get that 1−S is invertible with inverse 1+S+S2+. . .+Sk−1.
Since S−1 = −(S−1) we see that S−1 is also invertible. The general case follows from the identity
S − b = (a− b)(1− (b− a)−1(S − a)).

Returning to the proof of Theorem 4, we have Z = W1 + W2 + · · · + Wk ⊆ W since Wi ⊆ W
which implies that dimZ ≤ dimW . But, by Corollary 3,

dimW ≤ dimW1 + dimW2 + · · ·+ dimWk = dimZ

so that dimZ = dimW and hence that Z = W .

Corollary 6. If T is a linear operator on a finite-dimensional vector space, then T is diagonalizable
if and only if there are distinct scalars a1, a2, . . . ak such that (T − a1)(T − a2) · · · (T − ak) = 0.

We now apply these results to the case of the differential operator D and the left-shift operator
L. Since (D−a)(xi+1eax) = xieax, we see that Span(eax, xeax, . . . , xk−1eax) ⊆ Ker(D−a)k. But the
functions eax, xeax, . . . , xk−1eax are linearly independent and so, since dim ker(D − a)k ≤ k, they
are a basis for ker(D − a)k. Hence, for example, Ker(D − 1)(D − 2)2Ker(D − 3)3 is 5-dimensional
with basis ex, e2x, xe2x, e3x, xe3x, x2e3x.

In the case of the left-shift operator L we have, in the case a 6= 0,

(L− a)(ni+1an) ∈ Span((an), (nan), · · · , (nian))

so that Span((an), (nan), . . . , (nk−1an) ⊆ Ker(L− a)k. But these sequences are linearly independent
and so are a basis of Ker(L− a)k since dim Ker(L− a)k ≤ k. Hence, for example,

dim(Ker(L− 1)(L− 2)2(L− 3)3 = 5

with basis (1), (2n), (n2n), (3n), (n3n), (n23n).
As another example, consider the problem of finding a formula for sn = 13 + 23 + · · · + n3.

Let s = (sn). Then (L − 1)(s) = ((n + 1)3 − n3) = 3(n2) + 3(n) + (1) which is in the kernel
of (L − 1)3. Hence s is in the kernel of (L − 1)4 so that there are constants A,B,C,D such that
sn = A+Bn+Cn2 +Dn3. The constants A,B,C,D can be found by solving the system of equations
obtained by setting n = 0, 1, 2, 3.

Particular solutions to non-homogeneous difference and recurrence equations can be sometimes
found by transforming the non-homgeneous equation into a homogeneous one. For example, the
equation (L−1)(L−2)x = (1) can be transformed into a homogeneous one by applying the operator
L− 1 to both sides of the equation obtaining (L− 1)2(L− 2)x = 0. The operator L− 1 was chosen
to kill the right-hand side of the equation. Thus xn = a + bn + c2n. The term a + c2n can be
omitted as it is in the kernel of (L − 1)(L − 2). We thus look for a particular solution of the form
xn = bn. The constant b can be found by substitution in the given non-homogeneous equation. A
similar procedure applies to differential equations.
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