Notes on Linear Operators

Theorem 1. Let T : U — V be a linear mapping. Then U is finite-dimensional iff Ker(T) and
Im(T) are finite-dimensional in which case

dim(U) = dim(Ker(T)) + dim(Im(T)).

Proof. (=) If V is finite-dimensional then so is Ker(T) since a subspace of a finite-dimensional vector
space is also finite-dimensional. Also, if U = Span(ey, ... ,ey), then Im(T) = Span(T(ey),... ,T(en))
so that the image of T is also finite-dimensional. Now if fi,..., fs is a basis for Ker(T) and we
complete f1,..., fs toabasis f1,..., fs, fs+1,- - fs4r of V then we claim that T(fs11),... , T(fstr)
is a basis for Im(T). Indeed, they span Im(T) since T'(f1) = ---T(fs) =0, and if a1 (fs41) +--- +
T (fstr) =0 we have T(ay fs41+- - ar fsr) = 0 which implies ay fs41+- - ap fspr = b1 f1+ - bsfs.

Bringing all terms to the left side we get a dependence relation among fi,... , fr4s. Since f!s are
linearly independent we get a3 = az = -+ = a5 = 0. This yields dim(U) = s + r = dim(ker(T)) +
dim(Im(T)).

(<) Now suppose Ker(T) and Im(T) are finite-dimensional. Let fi,... , fs be a basis for Ker(T)
and let hy,...h, be a basis for Im(T). We have h; = T(fs4:) with fsi1,..., fs4r € U. We claim
that fi,..., fs4r is a basis for U. Indeed, if u € U, then T(u) = as41T(fs41 + -+ + aspr T (fstr)
which implies that © — as11fs41 — - - — Gstr fs+r € Ker(T) and hence that

U—as1fs41 = = Qsqrfopr = arfi+ 0+ s fs

which gives © = a1 f1 + - - - @s4r fs+r and hence that f1,... fs4, generate U. To show linear inde-
pendence of these vectors suppose that aqf1 + - asyrfo4r = 0. Applying T to both sides yields

as,h1 + -+ - asyr-hy = 0 which gives as11 = -+ = as4, = 0 since hy,...h, are linearly independent.
But then aq f1 4+ - - - asfs = 0 which gives a; = --- = a5 = 0 by the fact that fy,
dots, fs are linearly independent.Thus dim(U) = r 4+ s = dim(Ker(T)) + dim(Im(T)). O

Corollary 2. Let T : U — V,S : V. — W be linear mappings such that Ker(S) and Ker(T) are
finite-dimensional. Then

dim Ker(ST) = dim Ker(T) 4 dim(Ker(S) N Im(T)).
Proof. We first note that Ker(T) C ker(ST) and that
u € ker(ST) <= ST(u) =0 <= T(u) € Ker(S) N Im(T).

Now let Tj : Ker(ST) — W be the linear mapping defined by restriction of T to Ker(ST). Then
Ker(Ty) = Ker(T) and Im(Ty) = Ker(S) Nim(T) which yields the result. O
Corollary 3. dim(ker(ST)) < dim(ker(5)) + dim(ker(T")) with equality if Ker(S) C Im(T), in par-

ticular, if T is surjective.

Theorem 4. Let T be a linear operator on a vector space V and let ay, as, ... ,ax be distinct scalars
such that dim(Ker(T — a;)™) is finite-dimensional for 1 <i < k. Then
Ker((T —a1)" (T —ag)™ - (T — ax)™) = Ker(T — a;)™ + Ker(T — ag)" + - - - + Ker(T — ay)"*.

Proof. Let W = Ker((T —aq)" (T —ag)"2--- (T — ay)}}) and let W; = Ker(T — a;)". We first prove
that dim(Wy + -+ - + W) = dim(W7) + - - - dim(Wy). For this is suffices to prove that if w; € Wy
with wy + wg + ---wp = 0 then wy = wy = ---wi = 0. Let S; be the product of the operators



(T — a;)™ with j # 4. Then, applying S; to both sides of wy + - --wy = 0, we get S;(w;) = 0 since
Si(w;) = 0 for j #i. Since S;(W;) C W;, the restriction of S; to W is a linear operator on W; and
Si = [1;2:(Tj —a;j)", where T is the restriction of T' to W;. That w; = 0 follows from the following
Lemma since

Lemma 5. If S is a linear operator on a vector space W and a is a scalar such that (S —a)™ =0
then S — b is invertible for every b # a.

Proof. We first prove this in the case a =0, b = 1. Then S™ = 0 so that
1-8)A+S+8*+---+8" 1 =1485+8%+...8" g -82 ... G117,

Since two polynomials in S commute we get that 1—S is invertible with inverse 14+S+S5%+4...4+8k~1.
Since S—1 = —(S5—1) we see that S —1 is also invertible. The general case follows from the identity
S—b=(a—0b)(1—(b—a)"(S—a)). O

Returning to the proof of Theorem 4, we have Z = Wy + W + -+ + Wi, C W since W; C W
which implies that dim Z < dim W. But, by Corollary 3,

dimW <dimW; +dim Wy + --- +dim Wy = dim Z
so that dim Z = dim W and hence that Z = W. O

Corollary 6. IfT is a linear operator on a finite-dimensional vector space, then T is diagonalizable
if and only if there are distinct scalars ay,as,. .. ay such that (T —a1)(T —ag)--- (T —ag) = 0.

We now apply these results to the case of the differential operator D and the left-shift operator
L. Since (D —a)(z+1e) = 27, we see that Span(e®™, xe®, ... ,x*"1e?¥) C Ker(D —a)*. But the
functions e®*, xe®, ... 2¥~1e are linearly independent and so, since dimker(D — a)¥ < k, they
are a basis for ker(D — a)¥. Hence, for example, Ker(D — 1)(D — 2)?Ker(D — 3)3 is 5-dimensional
with basis e%, e2*, ze?®, 3z, xe3%, 12e3%.

In the case of the left-shift operator L we have, in the case a # 0,

(L - a)(n'*'a") € Span((a"), (na), -, (n'a"))

so that Span((a®), (na®), ..., (n*"!a®) C Ker(L — a)k. But these sequences are linearly independent
and so are a basis of Ker(L — a)¥ since dim Ker(L — a)* < k. Hence, for example,

dim(Ker(L — 1)(L — 2)*(L - 3)> =5

with basis (1), (27), (n2"), (37), (n3"), (n?3).

As another example, consider the problem of finding a formula for s, = 13 +23 + ... 4 n3.
Let s = (s,). Then (L — 1)(s) = ((n + 1)> —n3) = 3(n?) + 3(n) + (1) which is in the kernel
of (L —1)3. Hence s is in the kernel of (L — 1)* so that there are constants A, B,C, D such that
s, = A+Bn+Cn?+Dn?. The constants A, B, C, D can be found by solving the system of equations
obtained by setting n = 0,1, 2, 3.

Particular solutions to non-homogeneous difference and recurrence equations can be sometimes
found by transforming the non-homgeneous equation into a homogeneous one. For example, the
equation (L —1)(L—2)z = (1) can be transformed into a homogeneous one by applying the operator
L — 1 to both sides of the equation obtaining (L — 1)?(L — 2)x = 0. The operator L — 1 was chosen
to kill the right-hand side of the equation. Thus z, = a + bn + ¢2"™. The term a + ¢2" can be
omitted as it is in the kernel of (L — 1)(L — 2). We thus look for a particular solution of the form
Zn, = bn. The constant b can be found by substitution in the given non-homogeneous equation. A
similar procedure applies to differential equations.



