McGill University Math 270A: Applied Linear Algebra Assignment 4: due Thursday November 11, 1999

1. Find the (normalized) QR-decomposition of the matrix

$$\begin{bmatrix} 1 & 2 & 4 \\ 0 & 1 & 1 \\ 1 & 4 & 6 \end{bmatrix}$$

and use it to find the least squares solution of the system

$$x_1 + 2x_2 + 4x_3 = 1$$
$$x_2 + x_3 = 1$$
$$x_1 + 4x_2 + 6x_3 = 1.$$

- 2. Let $V = \mathbb{R}^{2 \times 2}$ and let $T: V \to V$ be defined by T(X) = CX XC, where $C \in \mathbb{R}^{2 \times 2}$ is fixed.
 - (a) Show that T is linear;
 - (b) If C is not a scalar multiple of the identity, show that the kernel of T is at least 2-dimensional;
 - (c) If $C = \begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix}$, find bases for the kernel and image of T. (d) If C is as in (c), show that $T^3 = 16T$.
- 3. Let V be the vector space of polynomials $p(t) = a_0 + a_1t + a_2t^2 + a_3t^3$ with real coefficients a_i . Let $V \to V$ be defined by $T(p(t)) = t^2 p''(t) 2p(t)$, where p'(t) is the derivative of p(t).
 - (a) Show that T is linear;
 - (b) Find bases for the kernel and image of T;
 - (c) Find the matrix of T with respect to the basis $1, t, t^2, t^3$ and the matrix of T with respect to the basis $1+t, 1-t, t^2+t^3, t^2-t^3$; If A, B are respectively these two matrices, find a matrix P such that $P^{-1}AP = B$.
- 4. Let T be as in question 2(c) and let A be its matrix with respect to the basis

$$\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}.$$

- (a) Find the charateristic polynomial of T and the eigenvalues of A;
- (b) Find a basis for each of the eigenspaces of A;
- (c) Find an invertible matrix P such that $P^{-1}AP$ is a diagonal matrix.