- 1. (a) We have $\sum \frac{a_n}{n^q} = \sum \frac{a_n}{n^p} \frac{1}{n^{q-p}}$ and so the result follows from Dirichlet's test or Abel's test.
 - (b) We have $(k-1)a_k ka_{k+1} \ge (a-1)a_k$ for $k \ge N$. Summing from k = n+1 to t = m, we get $(a-1)\sum_{k=n+1}^m \le na_{n+1} ma_{m+1} < na_{n+1}$ which implies $r_n \le na_{n+1}/(a-1)$. Note that $\sum a_n$ converges and $a_{n+1} < a_n$ for $n \ge N$ since $R_n > 0$ for $n \ge N$ so that $na_n \to 0$
- 2. $\frac{a_{n+1}}{a_n} = \frac{(n+a)(n+b)}{(n+c)(n+1)} \to 1 \implies R = 1. \text{ At } x = 1, \text{ we have } \frac{a_{n+1}}{a_n} = 1 \frac{(c+1-a-b)n+c-ab}{n^2+(c+1)n+1}$ which implies $R_n = n(1-a_{n+1}/a_n) \to c+1-a-b$. By the Gauss test we have absolute convergence for c > a+b and divergence for $c \le a+b$. If x = -1 we have an eventually alternating series $\sum a_n$ with $\frac{|a_{n+1}|}{|a_n|} = 1 \frac{(c+1-a-b)n+c-ab}{n^2+(c+1)n+1}$. We thus have absolute convergence if c > a+b. If c < a+b-1 we have $|a_{n+1}| \ge |a_n|$ for $n \ge N$ so that the series diverges. If c > a+b-1, we have $|a_{n+1}| < |a_n|$ and $|a_{n+1}|/|a_n| \le (1-h/n)$ for $n \ge N$ for some h > 0 so that $\log |a_{n+1}| \log |a_n| \le \log (1-h/n) < -h/n$ for $n \ge N$. It follows that $\log |a_{n+1}| \log |a_N| < -h \sum_{k=N}^n 1/k$ so that $\log |a_n| \to -\infty$ which implies $a_n \to 0$ his gives conditional convergence at x = -1 when $a+b-1 < c \le a+b$. If c = a+b-1, we have $|a_{n+1}|/|a_n| = 1 + h_n/n^2$ for $n \ge N$ with h_n bounded. Then $|a_{n+1}|/|a_N| = \prod_{k=N}^n (1+h_k/k^2)$. Since $\prod_{N=1}^\infty (1+h_k/k^2)$ converges, a_n cannot converge to zero so that we have divergence when x = -1 and x = a+b-1. In summary, the interval of convergence is x = -1 when x = -1 and x = a+b-1 is no summary, the interval of convergence is x = -1 when x = -1 and x = a+b-1 is no summary, the interval of convergence is x = -1.
- 3. (a) Since $|a_n| \leq Mn^c$, we have $|a_n|/n^s \leq 1/n^{s-c}$ and so we have absolute convergence for s > c+1. The convergence is uniform for $s \geq c+1+\epsilon$ since $|\sum_{k=n}^{\infty} a_n/n^s| \leq M/n^{1+\epsilon}$ for $s \geq c+1+\epsilon$. Since the partial sums are continuous functions of s, this implies that the sum of the series is continuous as a function of s for $s > 1+c+\epsilon$ for any ϵ and hence for s > 1+c.
 - (b) $S=(1-\frac{1}{2^{s-1}})\zeta(s)=\sum_{n=1}^{\infty}\frac{1}{n^s}-\sum_{n=1}^{\infty}\frac{2}{(2n)^s}=\sum_{n=1}^{\infty}\frac{1}{n^s}-\sum_{n=1}^{\infty}a_n,$ where $a_n=0$ if n is odd and $a_n=2/n^s$ if n is even. This gives $S=\sum_{n=1}^{\infty}\frac{(-1)^{n-1}}{n^s}=F(s).$ Since $|\sum_{k=n}^{\infty}(-1)^{k-1}/k^s|\leq 1/n^s\leq 1/n^\epsilon$ for $s\geq \epsilon>0$, we see that the series for F(s) is uniformly convergent for $s\geq \epsilon.$ Since the partial sums are continuous, we see that F(s) is continuous.
- 4. By Dirichlet's test for improper integrals we have $|\int_n^\infty \frac{\sin x}{x^s} dx| \le 2/n^s \le 2/n^\epsilon$ for $s \ge \epsilon > 0$. Hence f(s) is the uniform limit of the functions $\int_1^n \frac{\sin x}{x} dx$ on $s \ge \epsilon$. We only have to show that $f_n(s)$ is continuous for $s \ge \epsilon$. But this follows from $|f_n(s) f_n(t)| \le \int_1^n |x^s x^t| dt$ and the fact that $|x^s x^t| \le K|s t|$ on $[1, n] \times I$, where I is the interval with endpoints s, t.