- 1. (a) For the result to be true we must have a < b. Since $f \in \mathcal{R}(a,b)$, the set of discontinuities of f is a set of measure zero. Since [a,b] is not of measure zero, there is a point $c \in [a,b]$ such that f is continuous at c. Since f(c) > 0 and f is continuous at c, there is an interval $[c,d] \subseteq [a,b]$ with c < d such that f(x) > m on [c,d]. But then $\int_a^b f(x) \, dx \ge \int_c^d f(x) \, dx \ge m(d-c) > 0$.
 - (b) Any positive function which is zero except for a finite set of points has integral zero.
- 2. (a) Let $\epsilon > 0$ be given. Since $f_n \to 0$ uniformly on S, there exists N such that $|f_n(x)| < \epsilon$ for $n \geq N$ and all $x \in S$. Since $x_n \in S$, we have $|f_n(x_n)| < \epsilon$ for $n \geq N$. This shows that $f_n(x_n) \to 0$. Notice that we have shown that $f_n \to 0$ uniformly on S implies that $f_n(x_n) \to 0$ for an arbitrary sequence (x_n) in S. It is left as an exercise for the reader to show that the converse to this statement holds.
 - (b) If $f_n(x) = x^n$, then $f_n \to 0$ on S = (0,1) but the convergence is not uniform since $x_n = 1/\sqrt[n]{2} \in S$ implies that $f_n(x_n) = 1/2$ so that $f_n(x_n)$ does not converge to zero. However, if x_n is any sequence which converges to $a \in S$, there is an r with a < r < 1 such that $x_n < r$ for $n \ge N$. Then $f_n(x_n) = x_n^n < r^n$ for $n \ge N$ implies $f_n(x_n) \to 0$.
- 3. We have $\sin x = x x^3/3! + x^5/5! \cdots$ so that $(x \sin x)/x^3 = 1/6 + R(x)$ with

$$R(x) = \sum_{n=3}^{\infty} (-1)^n \frac{x^{2n-1}}{(2n-1)!} = -\frac{x^5}{5!} + \frac{x^7}{7!} - \cdots,$$

an alternating series with $x^{2n-1}/(2n-1)!$ a decreasing sequence for $x \le 1$. Hence $|R(x)| < x^5/5!$ for $x \le 1$ which shows that $R(x) \to 0$ as $x \to 0$.

- 4. (a) If $x \neq 0$, we have $f_n(x) = (1+x)/(1+x^{2n}) \to 0$ since $x^{2n} \to \infty$. Since $f_n(0) = 1$, we have $f_n \to f$ with f(0) = 1 and f(x) = 0 if $x \neq 0$.
 - (b) Since f_n is continuous for all n but f is not, the convergence cannot be uniform. This can also be seen by taking $x_n = 1/n$ and noting that $f_n(x_n) = 1$ so that $f_n(x_n)$ does not converge to zero.