- 1. (a) (f_n) converges pointwise to 0 on \mathbb{R} since $\left|\frac{x}{x+n}\right| \leq \frac{|x|}{|n-|x||} < \epsilon$ for $n > |x| + |x|\epsilon$.
 - (b) For $0 \le x \le a$, the convergence is uniform since $\frac{x}{x+n} \le \frac{x}{n} \le \frac{a}{n} < \epsilon$ for $n > \epsilon/a$. To show that the convergence is not uniform for $x \ge 0$, let $\epsilon = 1/2$ and let N > 0 be given. Then for x = N = n, we have $f_n(x) = 1/2$.
- 2. (a) Since $f_n(0) = 0$, the sequence converges pointwise for x = 0. If $x \neq 0$, we have

$$\left| \frac{nx}{1 + n^2 x^2} \right| < \frac{1}{n|x|} \le \epsilon \text{ if } n \ge 1/\epsilon |x|$$

which shows that (f_n) converges pointwise to 0 on \mathbb{R} .

- (b) For $x \ge a$, the convergence is uniform since $0 \le f_n(x) < 1/na \le \epsilon$ if $n \ge 1/a\epsilon$. To show that the convergence is not uniform for $x \ge 0$, let $\epsilon = 1/2$ and let N > 0 be given. Then for x = 1/N, n = N, we have $f_n(x) = 1/2$.
- 3. Let $\epsilon > 0$ be given and pick N so that $g_n(x) < \epsilon$ for all $x \in S$ and all $n \ge N$. Then

$$\left| \sum_{k=n}^{m} (-1)^{k+1} g_k(x) \right| \le g_n(x) < \epsilon$$

for $m \ge n \ge N$ and all $x \in S$. Thus the series satisfies a uniform Cauchy condition on S and hence converges uniformly on S.