1. Let M>0 with $|f(x)|\leq M$ on [a,b]. Let $\epsilon>0$ be given and choose c so that $a< c\leq b$ and $c-a<\epsilon/2M$. Choose a partition Q of [c,b] such that $U(Q,f)-L(Q,f)<\frac{\epsilon}{2}$ and let $P=Q\cup\{a\}$. Then P is a partition of [a,b] and

$$U(P,f)-L(P,f)=(\sup_{[a,c]}f-\inf_{[a,c]}f)(c-a)+U(P,f)-L(P,f)<2M(c-a)+\frac{\epsilon}{2}<\frac{\epsilon}{2}+\frac{\epsilon}{2}=\epsilon.$$

- 2. (a) f' exists and is bounded on $[0,1] \implies f$ is of bounded variation on [0,1]
 - (b) Let P_n be the partition of $[2/(4n+1)\pi, 2/\pi]$ formed by points $2/(2k-1)\pi$ with $1 \le k \le 2n$. Then

$$V_f(0,1) \ge A(P_n) = \sqrt{\frac{2}{\pi}} \sum_{k=1}^{2n} \frac{1}{2k-1} \to \infty \text{ as } n \to \infty$$

which implies that f is not of bounded variation on [0,1].

- 3. $f \ge 0$ and $f \ne 0 \Rightarrow f \ge m > 0$ on $[c,d] \subseteq [a,b]$ with $c \ne d \Rightarrow \int_a^b f(x) dx \ge \int_c^d f(x) dx \ge m(d-c) > 0$.
- 4. For any partition $P = \{x_0 = a < x_1 < \dots < x_n = x\}$ of [a, x]

$$\sum_{k=1}^{n} |\Delta g_k| = \sum_{k=1}^{n} \left| \int_{x_{k-1}}^{x_k} f(t) dt \right| \le \sum_{k=1}^{n} \int_{x_{k-1}}^{x_k} |f(t)| dt = \int_{a}^{x} |f(t)| dt$$

which shows that $V_g(a,x) \leq \int_a^x |f(t)| dt$. By the MVT for integrals

$$\int_{x_{k-1}}^{x_k} |f(t)| dt = c_k \Delta x_k \quad \text{with} \quad m_k(f) \le c_k \le M_k(f).$$

We can choose P so that $U(P,f) - L(P,f) < \epsilon$. Pick $t_k \in [x_{k-1},x_x]$. Then

$$|c_k - f(t_k)| \le M_k(f) - m_k(f) \implies |c_k| \ge f(t_k) - (M_k(f) - m_k(f))$$

so that

$$V_g(a, x) \ge \sum_{k=1}^n |\Delta g_k| = \sum_{k=1}^n |c_k| \Delta x_k \ge \sum_{k=1}^n |f(t_k)| \Delta x_k - \epsilon \ge L(P, |f|) - \epsilon.$$

The same argument shows that $V_g(a,x) \geq L(Q,|f|) - \epsilon$ for any partition Q finer than P from which we get

$$V_g(a, x) \ge \int_a^x |f(t)| dt - \epsilon.$$

The result follows since ϵ is arbitrary.