- 1. By induction, it suffices to consider the case that f and g differ at a single point c. It suffices to show that $h = f g \in \mathcal{R}(a, b)$ and $\int_a^b h(x) \, dx = 0$. Since f is bounded, so is g and hence h. Choose M > 0 so that $|h(x)| \leq M$ on [a, b]. Let $\epsilon > 0$ be given and let $P = \{a = x_0 < x_1 < \dots < x_n\}$ be a partition of [a, b] of norm $\delta < \epsilon/M$. If $c \in [x_{k-1}, x_k]$ and t is any tag for P, we have $S(P, t, h) = h(t_k)\delta x_k$ so that $|S(P, t, h)| \leq M\delta < \epsilon$. If follows that $h \in \mathcal{R}(a, b)$ and $\int_a^b h(x) \, dx = 0$.
- 2. (a) The Riemann-Stieltjes sum for the partition

$$a, a + \frac{b-a}{n}, \frac{2(b-a)}{n}, \dots, a + \frac{n(b-a)}{n} = b$$

of [a,b] and tags $a+\frac{b-a}{n},\frac{2(b-a)}{n},\ldots,a+\frac{(n(b-a)}{n}=b$ is

$$S_n = \sum_{k=1}^n f(a + \frac{k(b-a)}{n}) \left(\frac{b-a}{n}\right) = \left(\frac{b-a}{n}\right) \sum_{k=1}^n f(a + \frac{k(b-a)}{n}).$$

Given ϵ there is a $\delta > 0$ so that any Riemann-Stieltjes sum S for any tagged partition of norm $< \delta$ satisfies $|S - \int_a^b f(x) \, dx| < \epsilon$. Since the norm of the above partition is (b-a)/n, we see that $|S_n - \int_a^b f(x) \, dx| < \epsilon$ if $(b-a)/n < \delta$ or, equivalently $n > N = (b-a)/\delta$. This shows $\lim S_n = \int_a^b f(x) \, dx$.

- (b) $\lim_{n \to \infty} \sum_{k=1}^{n} \frac{n}{n^2 + k^2} = \lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^{n} \frac{1}{1 + k^2/n^2} = \int_0^1 \frac{dx}{1 + x^2} = \frac{\pi}{4}.$ $\lim_{n \to \infty} \sum_{k=1}^{n} \frac{1}{\sqrt{n^2 + k^2}} = \lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^{n} \frac{1}{\sqrt{1 + k^2/n^2}} = \int_0^1 \frac{dx}{\sqrt{1 + x^2}} = \log(1 + \sqrt{2}).$
- 3. (a) Define f on [0,1] by f(x) = -1 if x is rational and f(x) = 1 if x is irrational. Then f is not Riemann integrable on [0,1] since U(P,f) L(P,f) = 2 for any partition P of [0,1]. Since |f| is the constant function 1, it is Riemann integrable.
 - (b) The function f defined by f(0) = 0 and $f(x) = x^2 \sin(1/x^2)$ is differentiable for $x \neq 0$ with $f'(x) = 2x \sin(1/x^2) 2\cos(1/x^2)/x$ which is unbounded on (0,1]. We also have $f'(0) = \lim_{h\to 0+} f(h)/n = 0$ so that f' exists on [0,1] but f' is not Riemann integrable there since f' is unbounded on [0,1].