MATH 255: Lecture 9
The Riemann-Stieltjes Integral: Mean-Value Theorems, Fundamental Theorems
Theorem 24: First Mean-Value Theorem for Riemann-Stieltjes Integrals. Let f, a be func-

tions on [a,b] with f bounded and « increasing. If f € R(«,a,b) and m, M are respectively the inf
and sup of f on [a,b], there exists ¢ € [m, M] such that

b
/ f(z) da(z) = c(a(b) — a(a)).

If f is continuous, we have ¢ = f(&) for some ¢ € [a, b].

Proof. For any tagged partition (P,t) of [a,b] we have
m(a(b) —ala)) < S(P.t, f,a) < M(a(b) — afa))

which implies that m(a(b) — a(a)) < f; f(z)da(r) < M(a(b) —ala)). If a(a) = a(b), any ¢ € [m, M|

will do; otherwise, we take
1 b
= e . T
QED

Theorem 25: Second Mean-Value Theorem for Rieman-Stieltjes integrals. If a is continuous
on [a,b] and f is increasing on [a, b], there is a point £ € [a, b] such that

/ab f(x)da(x) = f(a) /j do(z) + f(b) /: da(z).

Proof. Integrating by parts, we have

b b
/ f(@) da(z) = F(B)a(b) — f(a)ala) - / a(z) df (z).

a

Applying the First Mean-Value Theorem to the integral fab ax) df (x), we get

b
/ f(z)da(z) = f(a)(a(§) — ala)) + f(b)(a(b) — a(§)),
where £ € [a, b]. QED

Theorem 26. Let a be of bounded variation on [a,b] and let f € R(a,a,b) with f bounded on [a, b].
If we define,

F@) = [ 1t)dalt
for a < x < b, we have
(a) F is of bounded variation on [a, b];

(b) Every point of continuity of « is a point of continuity of F;

(¢) If « is increasing, then F’(x) exists at every point where o’ (z) exists and f(z) is continuous. For
such = we have



Proof. Without loss of generality, we can assume « is increasing. By the First Mean-Value Theorem,
we have

nw—fmnzjwﬂwwmw=dmw—am»

where m = inf f < ¢ <sup f = M. This yields (a) and (b). To prove (c), divide by y — z > 0 and let
y — x. Note that ¢ = f(&§) — f(z). QED

Corollary: First Fundamental Theorem of Integral Calculus. If f is a bounded function on
[a,b] and f € R, then

d x
& rwa=rw
at each point of continuity = of f on [a, b].

Theorem 27: Second Fundamental Theorem of Integral Calculus. If f, F' are functions on
[a,b] with f € R(a,b) and F differentiable on [a, b] such that F'(z) = f(z) on (a,b), then

b
/ f(@)dz = F(b) — F(a).

Proof. For any partition P = {a = zg < 1 < -+ < &, = b} of [a, b], we have
F(b) = F(a) =Y (F(zx) = Flwe—1) = Y _ F'(tx) Az =Y f(te) Axg,
k= k=

1 1 k=1

where xy_1 < ty < g, using the Mean-Value Theorem for Derivatives. QED

Exercise 3. Show that Theorem 27 remains true if the condition F’(x) = f(z) on (a,b) is replaced by
F'(z) = f(x) except possibly for a finite set of points.

Theorem 28: Change of Variable in a Riemann Integral. Let f be a continuous function on
[a,b] and let g be a continuously differentiable function on [¢, d] such that g(c¢) = a, g(d) = b. Then

b d
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Proof. The functions

Q(I) x
Huw:/ f(t)dt and K@ﬁzj’ﬂmmyth

have the same derivative f(g(z))g¢'(z) and are equal at x = c. QED

Theorem: Second Mean-Value Theorem for Integrals.Let f, g be functions on [a,b] with f
increasing and g continuous. Then

b 3 b
x)g(z)dxr = f(a ) dx b x)dx
| @) fUAﬂ)-ﬁUlﬂ)

for some £ € [a, b].

Proof. If G(z) = [ g(z) dz and

b b
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for some & € [a,b] by the First Mean-Value Theorem for Riemann-Stieltjes Integrals. QED



Corollary: Bonnet’s Theorem. Let f, g be functions on [a,b] with f > 0 increasing, and g
continuous. Then

b b
x)g(x)dx = f(b x)dx
/afmg() f<>/§g<>

for some ¢ € [a, b].

Proof. This follows immediately from the Theorem by re-defining f at a to be 0. The integrals don’t
change and f is still increasing on [a, b].

Taylor’s Theorem with Integral Form of Remainder. Suppose that f, f/,..., f(™, f+1) exist
on [a,b] and that f("*1) € R(a,b). Then,

(k) (g
=30 a4 R,
k=0 ’

1 b
where R, 1 = ﬁ/ FOD @) (b — )" dt.

Proof. For n = 0 this is just the second form of the Fundamental Theorem. If we integrate R,, by
parts, we get

b (n)
Rn+1 _ %/ (b _ t)ndf(n) (t) _ _f n|(a) (b _ a)n +R,

and the result follows by induction. QED

The Riemann-Stieltjes integral f: fda can be extended to the case f and « are complex-valued
functions. The definitions are exactly the same as for the case of real-valued functions. If f = f; +ifs,
a = aj + iag are complex-valued functions on [a, b], we have

/abfdaz </abf1da1—/abfzda2> +i</abf2da1+/abf1da2),

whenever all four integrals on the right exist. Using this we can extend most of the important theorems
to the complex case if we define such notions as continuity, differentiability and bounded variation
componentwise.
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