
MATH 255: Lecture 8

The Riemann-Stieltjes Integral: Functions of Bounded Variation

The results we have obtained for increasing integrators α can be extended to an important class of
functions, namely, functions of bounded variation.

Definition. A function α on [a, b] is said to be of bounded variation on [a, b] if the sums

A(P ) =
n∑

k=1

|∆αk| =
n∑

k=1

|α(xk)− α(xk−1)|,

where P = {a = x0 < x1 < · · · < xn = b} varies over all partitions of [a, b], are bounded. In this case,

Vα(a, b) = sup
P

A(P )

is called the total variation of α on [a, b]. If α is increasing, we have Vα = α(b)− α(a).

Note that P ⊆ Q ⇒ S(P ) ≤ S(Q). Indeed, if xk < c < xk−1, we have

|α(xk)− α(xk−1)| ≤ |α(xk)− α(c)|+ |α(c)− α(xk−1)|

so that A(P ) ≤ A(P ∪ c). Applying this to the case Q = {a < x < b}, we get |α(x)− α(a)| ≤ Vα(a, b),
which shows that a function of bounded variation is bounded.

If α is of bounded variation on [a, b] and a ≤ c ≤ d ≤ b, then α is of bounded variation on [c, d] and
Vα(c, d) ≤ Vα(a, b) since any partition of [c, d] can be extended to a partition of [a, b].

If α is continuous on[a, b] with a bounded derivative on (a, b) then, by the Mean Value Theorem for
Derivatives, α is of bounded variation on [a, b]. It follows that a piecewise smooth function on[a, b] is
also of bounded variation. More generally, if α satisfies the Lipschitz condition |α(x)−α(y) ≤ M |x−y|
for all x, y ∈ [a, b], then α is of bounded variation on [a, b]

Example 1. The function α on [0, 1] by α(0) = 0, α(x) = sin(1/x) if x 6= 0 is not of bounded variation.
Indeed, if P is the set of points 2/(2k + 1)π, where 0 ≤ k ≤ n, then A(P ) = 2n.

Example 2. The function α on [0, 1], defined by α(0) = 0, α(x) = x sin(1/x) if x 6= 0 is continuous
but not of bounded variation. Indeed, for the set P in Example 1, we have

A(P ) =
π

2
(1 +

1
2

+ . . . +
1
n

),

which can be arbitrarily large.

Exercise 1. If α, β are of bounded variation on [a, b] and c ∈ R, show that cα, α + β, αβ are of
bounded variation on [a, b]. If there is an m > 0 so that |α(x)| ≥ m for all x ∈ [a, b], show that 1/α is
of bounded variation on [a, b].

Theorem 20. If a ≤ c ≤ b, then α is of bounded variation on [a, b] ⇐⇒ α is of bounded variation on
[a, c] and [c, d], in which case

Vα(a, b) = Vα(a, c) + Vα(c, b).

Proof. If Q, R are partitions of [a, c], [c, b] respectively, then Q ∪R is a partition of [a, b] and

A(Q ∪R) = A(Q) + A(R).

Moreover, any partition of [a, b] which contains c is of this form. The theorem follows easily from this;
the details are left to the reader. QED
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If α is of bounded variation on [a, b] and a ≤ x ≤ b, we define Vα(x) = Vα(a, x). If a ≤ x ≤ y ≤ b,
we have

Vα(y) = Vα(x) + Vα(x, y),

which shows that Vα is an increasing function on [a, b]

Theorem 21. If α is of bounded variation on [a, b] and V = Vα, then D = V − α is an increasing
function on [a, b] so that α = V −D, a difference of two increasing functions.

Proof. For a ≤ x ≤ y ≤ b we have

D(y)−D(x) = V (y)− V (x)− (α(y)− α(x)) = Vα(x, y)− (α(y)− α(x)) ≥ 0.

QED

We now show that the points of continuity of α are the same as the points of continuity of Vα.

Theorem 22. Let α be of bounded variation on [a, b] and let a ≤ c ≤ b. Then α is continuous at the
point c ⇐⇒ V = Vα is continuous at c.

Proof.(⇒) Let ε > 0 be given and choose a partition P = {c = x0 < x1 < · · · < xn = b} so that

Vα(c, b)− ε

2
< A(P ) and |α(x1)− α(c)| < ε

2
.

Then

Vα(c, b)− ε

2
< |∆α1|+

n∑

k=2

|∆αk| ≤ ε

2
+ Vα(x1, b)

which implies V (x) − V (c) ≤ V (x1) − V (c) = Vα(c, x1) = Vα(c, b) − Vα(x1, b) < ε when c ≤ x ≤ x1.
Hence V is right continuous at c. A similar argument can be used for left continuity; the details are
left to the reader.

(⇐) If a ≤ c < x ≤ b, then |α(x)− α(c)| ≤ V (x)− V (c). This implies that

|α(c+)− α(c)| ≤ V (c+)− V (c) = 0.

Similarly, a < c =⇒ |α(c)− α(c−)| ≤ V (c)− V (c−) = 0. QED

Corollary. If α is continuous and of bounded variation on [a, b], then α is the difference of two
continuous increasing functions on [a, b].

Theorem23. If α is of bounded variation on [a, b] and f is bounded on [a, b], then

f ∈ R(α, a, b) =⇒ f ∈ R(V, a, b),

where V = Vα.

Proof. By hypothesis, we have |f(x)| ≤ M for a ≤ x ≤ b. Let ε > 0 be given and choose a partition
P = {a = x0 < x1 < · · · < xn = b} so that

V (b) <

n∑

k=1

|∆αk|+ ε

4M
and

n∑

k=1

|f(tk)− f(t′k)||∆αk| < ε

4

for any choice of tk, t′k ∈ [xk−1, xk]. We now choose the t′k ≤ tk so that

n∑

k=1

(Mk(f)−mk(f))|∆αk| ≤
n∑

k=1

(f(tk)− f(t′k))|∆αk|+ ε

4
.
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Here we have used the fact that
∑ |∆αk| ≤ V (b). Now

U(P, f, V )− L(P, f, V ) =
n∑

k=1

(Mk(f)−mk(f))∆Vk

=
n∑

k=1

(Mk(f)−mk(f))(∆Vk − |∆αk|) +
n∑

k=1

(Mk(f)−mk(f))|∆αk|

< 2M

n∑

k=1

(∆Vk − |∆αk|) +
ε

2

= 2M(V (b)−
n∑

k=1

|∆αk|) +
ε

2
< ε.

QED

Since D = V − α, the hypotheses of the theorem implies that f ∈ R(D, a, b) and

∫ b

a

f(x) dα(x) =
∫ b

a

f(x) dV (x)−
∫ b

a

f(x) dD(x).

It follows that Theorems 16, 17, 18 and 19 extend to the case α is of bounded variation. In particular,
f ∈ R(a, b) if f is of bounded variation on [a, b]. The details are left to the reader.

Exercise 2. Let f , α be functions on[a, b] with f bounded and α of bounded variation. If f ∈ R(α, a, b)
show that |f | ∈ R(Vα, a, b) and

∣∣∣∣
∫ b

a

f(x) dα(x)
∣∣∣∣ ≤

∫ b

a

|f(x)| dVα(x).
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