MATH 255: Lecture 8

The Riemann-Stieltjes Integral: Functions of Bounded Variation

The results we have obtained for increasing integrators « can be extended to an important class of
functions, namely, functions of bounded variation.

Definition. A function « on [a,b] is said to be of bounded variation on [a, b] if the sums
AP) =3 |Aag| =Y faler) — aler-1)],
k=1 k=1

where P = {a =20 <1 < - <, = b} varies over all partitions of [a, b], are bounded. In this case,

Vala,b) = Sllip A(P)

is called the total variation of & on [a,b]. If « is increasing, we have V,, = a(b) — a(a).

Note that P C Q = S(P) < S(Q). Indeed, if 2, < ¢ < xp_1, we have
(@) — alzx_1)| < lafer) — a(e)] + lafe) — alzp_1)|

so that A(P) < A(P Uc¢). Applying this to the case Q = {a < x < b}, we get |a(z) — a(a)| < V,(a,b),
which shows that a function of bounded variation is bounded.

If o is of bounded variation on [a,b] and a < ¢ < d < b, then « is of bounded variation on [¢, d] and
Val(e,d) < Vi, (a,b) since any partition of [¢, d] can be extended to a partition of [a, b].

If « is continuous on|a, b] with a bounded derivative on (a, b) then, by the Mean Value Theorem for
Derivatives, « is of bounded variation on [a,b]. It follows that a piecewise smooth function onla, b] is
also of bounded variation. More generally, if « satisfies the Lipschitz condition |a(z) — a(y) < M|z —y|
for all ,y € [a,b], then « is of bounded variation on |[a, b]

Example 1. The function « on [0,1] by a(0) = 0, a(z) = sin(1/z) if 2 # 0 is not of bounded variation.
Indeed, if P is the set of points 2/(2k + 1)m, where 0 < k < n, then A(P) = 2n.

Example 2. The function a on [0, 1], defined by «(0) = 0, a(x) = zsin(1/x) if  # 0 is continuous
but not of bounded variation. Indeed, for the set P in Example 1, we have

A(P) =
which can be arbitrarily large.
Exercise 1. If a, 3 are of bounded variation on [a,b] and ¢ € R, show that ca, o + 3, of are of
bounded variation on [a,b]. If there is an m > 0 so that |a(z)| > m for all z € [a, b], show that 1/« is
of bounded variation on [a, b].
Theorem 20. If a < ¢ < b, then « is of bounded variation on [a,b] <= « is of bounded variation on
[a, ] and [c,d], in which case

Va(aa b) =V (av C) + Va(ca b)
Proof. If Q, R are partitions of [a, c], [c, b] respectively, then Q U R is a partition of [a, b] and

A(QUR) = A(Q) + A(R).

Moreover, any partition of [a, b] which contains ¢ is of this form. The theorem follows easily from this;
the details are left to the reader. QED



If « is of bounded variation on [a,b] and a < z < b, we define V,(z) = V,(a,z). Ifa <z <y <,
we have

which shows that V, is an increasing function on [a, b]

Theorem 21. If « is of bounded variation on [a,b] and V = V,,, then D = V — « is an increasing
function on [a,b] so that a« =V — D, a difference of two increasing functions.

Proof. For a <z <y < b we have

QED
We now show that the points of continuity of « are the same as the points of continuity of V.

Theorem 22. Let o be of bounded variation on [a,b] and let @ < ¢ < b. Then « is continuous at the
point ¢ <= V =V, is continuous at c.

Proof.(=) Let € > 0 be given and choose a partition P = {¢ = xo < 1 < -+ < 2, = b} so that
Va(c,b) — % < A(P) and |a(z1) —a(c)| < %

Then

Va(e,h) = 5 < ||+ Y |Aay] < 5 + Valas,b)
k=2

which implies V(z) — V(c) < V(x1) — V(c) = Val(e,z1) = Vale,b) — Vo(x1,b) < € when ¢ < z < z4.
Hence V is right continuous at c¢. A similar argument can be used for left continuity; the details are
left to the reader.

(<) Ifa<c<az<b, then |a(z) — a(c)] < V(z) — V(c). This implies that
la(c+) — ale)] < V(e+) = V(e) = 0.
Similarly, a < ¢ = |a(c) — afe=)| < V(c) = V(e—) = 0. QED

Corollary. If « is continuous and of bounded variation on [a,b], then « is the difference of two
continuous increasing functions on [a, b].

Theorem23. If « is of bounded variation on [a,b] and f is bounded on [a, b], then
feR(a,a,b) = feR(V,a,b),

where V = V.

Proof. By hypothesis, we have |f(z)] < M for a < x < b. Let € > 0 be given and choose a partition
P={a=12¢<x <- - <z, =>} so that

” € " , €
V(b) < ; |Aa| + i and ; |f(tr) — f(t)|[Aak| < 1

for any choice of tx,t}. € [xx—_1,zk]. We now choose the ¢} <t so that
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D (M) = mu(F)IAar] < 3 (F(t) = F(t) | Aa] + 5.
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Here we have used the fact that Y |Aag| < V(b). Now
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(M (f) = mi(£))(AVk = [Ac]) + D (Mi(f) — ma(f))| Aa|
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< 2M Z(AVk - |AO¢]€D + =
k=1
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= 2M(V(b) — Zl [Aar]) + 5 <e
QED
Since D =V — «, the hypotheses of the theorem implies that f € R(D,a,b) and

/fda /de /de

It follows that Theorems 16, 17, 18 and 19 extend to the case « is of bounded variation. In particular,
f € R(a,b) if f is of bounded variation on [a,b]. The details are left to the reader.

Exercise 2. Let f, a be functions on[a, b] with f bounded and « of bounded variation. If f € R(«, a,b)
show that |f| € R(Va,a,b) and
/ F@)] dVa

x) da(z
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