MATH 255: Lecture 7

The Riemann-Stieltjes Integral: Comparison and Existence Theorems

Theorem 14. Let α be an increasing function on [a, b]. If $f, g \in \mathcal{R}$ on [a, b] and $f(x) \leq g(x)$ on [a, b], then

$$\int_{a}^{b} f(x) \, d\alpha(x) \leq \int_{a}^{b} g(x) \, d\alpha(x).$$

Proof. For every tagged partition (P, t) of [a, b] we have

$$S(P, t, f, \alpha) = \sum_{k=1}^{n} f(t_k) \Delta \alpha_k \le \sum_{k=1}^{n} g(t_k) \Delta \alpha_k$$

since $\Delta \alpha_k \geq 0$.

It follows that $g \in \mathcal{R}(\alpha, a, b) \Rightarrow \int_a^b g(x) d\alpha(x) \ge 0$ if $g(x) \ge 0$ on [a, b] and α is increasing.

Theorem 15. Let α be an increasing function on [a,b]. If $f \in \mathcal{R}(\alpha)$ on [a,b] and f is bounded on [a, b], then $|f| \in \mathcal{R}(\alpha)$ on [a, b] and

$$\left|\int_{a}^{b} f(x) \, d\alpha(x)\right| \leq \int_{a}^{b} |f(x)| \, d\alpha(x).$$

Proof. Let $P = \{a = x_0 < x_1 < \dots < x_n = b\}$ and let

$$m_k(f) = \inf_{x \in [x_{k-1}, x_k]} f(x), \quad M_k(f) = \sup_{x \in [x_{k-1}, x_k]} f(x).$$

Since $||f(x)| - |f(y)|| \le |f(x) - f(y)|$ we have $M_k(|f|) - m_k(|f|) \le M_k(f) - m_k(f)$ from which

$$U(P, |f|, \alpha) - L(P, |f|, \alpha) \le U(P, f, \alpha) - L(P, f, \alpha)$$

which implies $|f| \in \mathcal{R}(\alpha, a, b)$. The second assertion follows form the fact that $|S(P, f, \alpha)| \leq S(P, |f|, \alpha)$. QED

Exercise 1. Prove that the converse of this theorem is false.

Theorem 16. Let α , f be functions on [a, b] with α increasing and f bounded. Then

$$f \in \mathcal{R}(\alpha, a, b)) \Rightarrow f^2 \in \mathcal{R}(\alpha, a, b))$$

Proof. We have $m_k(f^2) = m_k(|f|)^2$, $M_k(f^2) = M_k(|f|)^2$. If $|f(x)| \le M$ on [a, b], we have

$$M_k(f^2) - m_k(f^2) = (M_k(|f|) + m_k(|f|))(M_k(|f|) - m_k(|f|)) \le 2M(M_k(f) - m_k(f)),$$

which implies that

$$U(P, f^2, \alpha) - L(P, f^2, \alpha) \le 2M(U(P, |f|, \alpha) - L(P, |f|, \alpha)).$$

Theorem 17. Let α , f, g be functions on [a, b] with α increasing and f, g bounded. Then

$$f,g \in \mathcal{R}(\alpha,a,b) \Rightarrow fg \in \mathcal{R}(\alpha,a,b)$$

Proof. $f(x)g(x) = \frac{1}{2}((f(x) + g(x))^2 - f(x)^2 - g(x)^2).$

QED

QED

QED

Theorem 18. Let α be an increasing function on [a, b] and let $f \in \mathcal{R}(\alpha, a, b)$. Assume that f, g are bounded on [a, b]. If

$$F(x) = \int_{a}^{x} f(t) \, d\alpha(t), \quad G(x) = \int_{a}^{x} g(t) \, d\alpha(t),$$

then $f \in \mathcal{R}(G, a, b), g \in \mathcal{R}(F, a, b)$ and

$$\int_a^b f(x)g(x)\,d\alpha(x) = \int_a^b f(x)\,dG(x) = \int_a^b g(x)\,dF(x).$$

Proof. For any partition $P = \{a = x_0 < x_1 < x_2 < \cdots < x_n = b\}$ of [a, b] we have

$$S(P,t,f,G) = \sum_{k=1}^{n} f(t_k) \int_{x_{k-1}}^{x_k} g(t) \, d\alpha(t) = \sum_{k=1}^{n} \int_{x_{k-1}}^{x_k} f(t_k) g(t) \, d\alpha(t),$$
$$\int_{a}^{b} f(x) g(x) \, d\alpha(x) = \sum_{k=1}^{n} \int_{x_{k-1}}^{x_k} f(t) g(t) \, d\alpha(t).$$

Therefore, if $|g(x)| \leq M$ on [a, b], we have

$$\begin{aligned} |S(P,t,f,G) - \int_{a}^{b} fg \, d\alpha| &= \left| \sum_{k=1}^{n} \int_{x_{k-1}}^{x_{k}} (f(t_{k}) - f(t))g(t) \, d\alpha(t) \right| \\ &\leq M \sum_{k=1}^{n} \int_{x_{k-1}}^{x_{k}} |f(t_{k}) - f(t)| \, d\alpha(t) \\ &\leq M \sum_{k=1}^{n} \int_{x_{k-1}}^{x_{k}} (M_{k}(f) - m_{k}(f)) \, d\alpha(t) = M(U(P,f,\alpha) - L(P,f,\alpha)) \end{aligned}$$

which implies that $f \in \mathcal{R}(G, a, b)$ and $\int_a^b fg \, d\alpha = \int_a^b f \, dG$. The second assertion follows by interchanging f and g. QED

We now give a sufficient condition for the existence of the Riemann-Stieltjes integral.

Theorem 19. If f is continuous on [a, b] and α is increasing on [a, b] then $f \in \mathcal{R}^*(\alpha)$ on [a, b].

Proof. It suffices to consider the case $A = \alpha(b) - \alpha(a) > 0$. Let $\epsilon > 0$ be given and choose $\delta > 0$ so that $|x - y| < \delta \Rightarrow |f(x) - f(y)| < \epsilon/2A$ which is possible because of the uniform continuity of f; see Lecture 26. If P is any partition of norm $< \delta$, we have $M_k(f) - m_k(f) \le \epsilon/2A$ which implies that

$$U(P, f, \alpha) - L(P, f, \alpha) \le \frac{\epsilon}{2A} \sum_{k=1}^{n} \Delta \alpha_k = \frac{\epsilon}{2} < \epsilon$$

This shows that f is strictly integrable with respect to α .

Corollary 1. If f is increasing on [a, b] and α is continuous on [a, b] then $f \in \mathcal{R}^*(\alpha)$ on [a, b].

Corollary 2. If f is continuous on [a, b] or if f is increasing on [a, b] then $f \in \mathcal{R}$ on [a, b].

Note that an increasing function on [a, b] has at most a countable number of discontinuities since the number of jumps $\geq 1/n$ is finite.

QED

A function f on [a, b] is said to be **piecewise continuous** if there is a partition

$$a = x_0 < x_1 < \dots < x_n = b$$

of [a, b] such that

- (a) the restriction of f to (x_{k-1}, x_k) is continuous for $1 \le k \le n$;
- (b) $f(x_k+)$ exists for $0 \le k < n$;
- (c) $f(x_k-)$ exits for $1 \le k \le n$.

Exercise 2. If f is piecewise continuous on [a, b], show that $f \in \mathcal{R}$ on [a, b].

Theorem 8 can be extended to the case α is piecewise smooth. Recall that a function α is **piecewise smooth** if there is a partition $a = x_0 < x_1 < \cdots < x_n = b$ of [a, b] such that the restriction α_k of α to $[x_{k-1}, x_k]$ has a continuous derivative α'_k for $1 \le k \le n$. Thus $\alpha'(x)$ exists except possibly at the points $x_1, x_2, \ldots, x_{n-1}$. At these points x_k , we define $\alpha'(x_k)$ to be the average of the left-hand and right-hand limits of $\alpha'(x)$. Then

$$\int_{x_{k-1}}^{x_k} f(x) d\alpha(x) = \int_{x_{k-1}}^{x_k} f(x) d\alpha_k(x) = \int_{x_{k-1}}^{x_k} f(x) \alpha'_k(x) dx = \int_{x_{k-1}}^{x_k} f(x) \alpha' dx$$

since the Riemann integrability and integral of a function is unchanged if we change the value of a function on a finite set of points. By additivity, we get

$$\int_{a}^{b} f(x) \, d\alpha(x) = \int_{a}^{b} f(x) \alpha'(x) \, dx.$$

In particular, we have

$$\int_{a}^{b} \alpha'(x) \, dx = \alpha(b) - \alpha(a)$$

if α is piecewise smooth on [a, b].

Exercise 3. Let f, α be functions on [a, b] and suppose that α is increasing on [a, b]. If a < c < b and f and g are both discontinuous from the right or the left at c, show that $\int_a^b f(x) d\alpha(x)$ cannot exist.

(Last modified 11:30 pm, January 28, 2003)