
MATH 255: Lecture 7

The Riemann-Stieltjes Integral: Comparison and Existence Theorems

Theorem 14. Let α be an increasing function on [a, b]. If f, g ∈ R on [a, b] and f(x) ≤ g(x) on [a, b],
then ∫ b

a

f(x) dα(x) ≤
∫ b

a

g(x) dα(x).

Proof. For every tagged partition (P, t) of [a, b] we have

S(P, t, f, α) =

n∑
k=1

f(tk)∆αk ≤
n∑

k=1

g(tk)∆αk

since ∆αk ≥ 0. QED

It follows that g ∈ R(α, a, b) ⇒
∫ b

a
g(x) dα(x) ≥ 0 if g(x) ≥ 0 on [a, b] and α is increasing.

Theorem 15. Let α be an increasing function on [a, b]. If f ∈ R(α) on [a, b] and f is bounded on
[a, b], then |f | ∈ R(α) on [a, b] and∣∣∣∣∫ b

a

f(x) dα(x)

∣∣∣∣ ≤ ∫ b

a

|f(x)| dα(x).

Proof. Let P = {a = x0 < x1 < · · · < xn = b} and let

mk(f) = inf
x∈[xk−1,xk]

f(x), Mk(f) = sup
x∈[xk−1,xk]

f(x).

Since ||f(x)| − |f(y)|| ≤ |f(x)− f(y)| we have Mk(|f |)−mk(|f |) ≤ Mk(f)−mk(f) from which

U(P, |f |, α)− L(P, |f |, α) ≤ U(P, f, α)− L(P, f, α)

which implies |f | ∈ R(α, a, b). The second assertion follows form the fact that |S(P, f, α)| ≤ S(P, |f |, α).
QED

Exercise 1. Prove that the converse of this theorem is false.

Theorem 16. Let α, f be functions on [a, b] with α increasing and f bounded. Then

f ∈ R(α, a, b)) ⇒ f2 ∈ R(α, a, b)).

Proof. We have mk(f
2) = mk(|f |)2, Mk(f

2) = Mk(|f |)2. If |f(x)| ≤ M on [a, b], we have

Mk(f
2)−mk(f

2) = (Mk(|f |) +mk(|f |))(Mk(|f |)−mk(|f |)) ≤ 2M(Mk(f)−mk(f)),

which implies that

U(P, f2, α)− L(P, f2, α) ≤ 2M(U(P, |f |, α)− L(P, |f |, α)).

QED

Theorem 17. Let α, f , g be functions on [a, b] with α increasing and f , g bounded. Then

f, g ∈ R(α, a, b) ⇒ fg ∈ R(α, a, b).

Proof. f(x)g(x) = 1
2 ((f(x) + g(x))2 − f(x)2 − g(x)2). QED
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Theorem 18. Let α be an increasing function on [a, b] and let f ∈ R(α, a, b). Assume that f, g are
bounded on [a, b]. If

F (x) =

∫ x

a

f(t) dα(t), G(x) =

∫ x

a

g(t) dα(t),

then f ∈ R(G, a, b), g ∈ R(F, a, b) and∫ b

a

f(x)g(x) dα(x) =

∫ b

a

f(x) dG(x) =

∫ b

a

g(x) dF (x).

Proof. For any partition P = {a = x0 < x1 < x2 < · · · < xn = b} of [a, b] we have

S(P, t, f,G) =

n∑
k=1

f(tk)

∫ xk

xk−1

g(t) dα(t) =

n∑
k=1

∫ xk

xk−1

f(tk)g(t) dα(t),

∫ b

a

f(x)g(x) dα(x) =

n∑
k=1

∫ xk

xk−1

f(t)g(t) dα(t).

Therefore, if |g(x)| ≤ M on [a, b], we have

|S(P, t, f,G)−
∫ b

a

fg dα| =
∣∣∣∣ n∑
k=1

∫ xk

xk−1

(f(tk)− f(t))g(t) dα(t)

∣∣∣∣
≤ M

n∑
k=1

∫ xk

xk−1

|f(tk)− f(t)| dα(t)

≤ M

n∑
k=1

∫ xk

xk−1

(Mk(f)−mk(f)) dα(t) = M(U(P, f, α)− L(P, f, α))

which implies that f ∈ R(G, a, b) and
∫ b

a
fg dα =

∫ b

a
f dG. The second assertion follows by interchanging

f and g.
QED

We now give a sufficient condition for the existence of the Riemann-Stieltjes integral.

Theorem 19. If f is continuous on [a, b] and α is increasing on [a, b] then f ∈ R∗(α) on [a, b].

Proof. It suffices to consider the case A = α(b) − α(a) > 0. Let ϵ > 0 be given and choose δ > 0 so
that |x − y| < δ ⇒ |f(x) − f(y)| < ϵ/2A which is possible because of the uniform continuity of f ; see
Lecture 26. If P is any partition of norm < δ, we have Mk(f)−mk(f) ≤ ϵ/2A which implies that

U(P, f, α)− L(P, f, α) ≤ ϵ

2A

n∑
k=1

∆αk =
ϵ

2
< ϵ.

This shows that f is strictly integrable with respect to α. QED

Corollary 1. If f is increasing on [a, b] and α is continuous on [a, b] then f ∈ R∗(α) on [a, b].

Corollary 2. If f is continuous on [a, b] or if f is increasing on [a, b] then f ∈ R on [a, b].

Note that an increasing function on [a, b] has at most a countable number of discontinuities since
the number of jumps ≥ 1/n is finite.
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A function f on [a, b] is said to be piecewise continuous if there is a partition

a = x0 < x1 < · · · < xn = b

of [a, b] such that

(a) the restriction of f to (xk−1, xk) is continuous for 1 ≤ k ≤ n;

(b) f(xk+) exists for 0 ≤ k < n;

(c) f(xk−) exits for 1 ≤ k ≤ n.

Exercise 2. If f is piecewise continuous on [a, b], show that f ∈ R on [a, b].

Theorem 8 can be extended to the case α is piecewise smooth. Recall that a function α is piecewise
smooth if there is a partition a = x0 < x1 < · · · < xn = b of [a, b] such that the restriction αk of α to
[xk−1, xk] has a continuous derivative α′

k for 1 ≤ k ≤ n. Thus α′(x) exists except possibly at the points
x1, x2, . . . , xn−1. At these points xk, we define α

′(xk) to be the average of the left-hand and right-hand
limits of α′(x). Then∫ xk

xk−1

f(x)dα(x) =

∫ xk

xk−1

f(x)dαk(x) =

∫ xk

xk−1

f(x)α′
k(x) dx =

∫ xk

xk−1

f(x)α′ dx

since the the Riemann integrability and integral of a function is unchanged if we change the value of a
function on a finite set of points. By additivity, we get∫ b

a

f(x) dα(x) =

∫ b

a

f(x)α′(x) dx.

In particular, we have ∫ b

a

α′(x) dx = α(b)− α(a)

if α is piecewise smooth on [a, b].

Exercise 3. Let f , α be functions on [a, b] and suppose that α is increasing on [a, b]. If a < c < b and

f and g are both discontinuous from the right or the left at c, show that
∫ b

a
f(x) dα(x) cannot exist.
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