MATH 255: Lecture 28

Normed spaces

Let V be a real or complex vector space. A function || || on V with values in \mathbb{R} is called a norm on V if

- (N1) For any $v \in V$, we have $||v|| \ge 0$ with equality $\iff v = 0$;
- (N2) For any scalar, $v \in V$, we have ||cv|| = |c|||c||;
- (N3) For any $u, v \in V$, we have $||u + v|| \le ||u + v||$.

Any norm on V defines a distance function d(u, v) = ||u - v|| so that any normed space is a metric space. A normed vector space is said to be complete if it is complete with respect to this metric. A complete normed space is called a Banach space.

Example 1. The set V = B(X) (respectively $B_{\mathbb{C}}(X)$), of bounded real-valued (respectively, complexvalued) functions on a set X is a vector space under the usual operations of pointwise addition and multiplication by scalars. If we define

$$||f||_{\infty} = \sup_{x \in X} |f(x)|,$$

then $|| ||_{\infty}$ is a norm on V. With this norm, V is complete. If $X = \mathbb{N}$, this space is denoted by ℓ^{∞} (respectively $\ell^{\infty}_{\mathbb{C}}$).

Example 2. If V is an inner product space with inner product \langle , \rangle , then $||v|| = \sqrt{\langle v, v \rangle}$ defines an inner product on V. If V is complete, then V is called a Hilbert space. For example, \mathbb{R}^n and \mathbb{C}^n are Hilbert spaces.

Example 3. If p > 0, let $V = \ell^1$ (resp. $\ell^1_{\mathbb{C}}$) the vector space of infinite sequences $u = (x_n)_{n \ge 0}$ of real (resp. complex) scalars x_n such that the series $\sum_{n=0}^{\infty} |x_n|$ is convergent. Then

$$||u|| = \sqrt{\sum_{n=0}^{\infty} |x_n|}$$

is a norm on V. To show that V is complete with this norm, let (u_n) be a Cauchy sequence in V with $u_n = (x_{nk})_{k\geq 0}$ be a Cauchy sequence. Since

$$|x_{nk} - x_{mk}| \le \sum_{k=0}^{\infty} |x_{nk} - x_{mk}| = ||u_n - u_m||_1$$

we see that $x_k = \lim_{n \to \infty} x_{nk}$ exists. Since

$$\sum_{k=0}^{N} |x_{nk} - x_{mk}| \le ||u_n - u_m||,$$

we obtain, on passing to the limit with respect to m,

$$\sum_{k=0}^{N} |(x_{nk} - x_k)| \le ||u_n - u_m||.$$

Passing to the limit in N, we get

$$\sum_{k=0}^{\infty} |x_{nk} - x_k| \le ||u_n - u_m||$$

which shows that $u_n - u \in V$ and hence that $u \in V$ and, moreover, that u_n converges to u.

Exercise 1. Let $V = \ell^2$ (resp. $\ell^2_{\mathbb{C}}$) the vector space of infinite sequences $x = (x_n)_{n \ge 0}$ of real (resp. complex) scalars x_n such that the series $\sum n = 0^{\infty} |x_n|$ is convergent. Show that

$$\langle x, y \rangle = \sqrt{\sum_{n=0}^{\infty} |x_n y_n|}$$

is an inner product on V and that V is a Hilbert space.

A series $\sum_{n=1}^{\infty}$ in a normed space is said to converge if the partial sums $s_n = u_1 + \cdots + u_n$ converge. The series is said to converge absolutely if the series $\sum_{n=1}^{\infty} ||u_n||$ converges.

Theorem 10. A normed space V is complete if and only if every Cauchy sequence converges.

Proof. If $\sum_{n=1}^{\infty} u_n$ is a series in V and s_n is the *n*-th partial sum, we have for n > m

$$||s_n - s_m|| = ||u_{m+1} + \ldots + u_n|| \le ||u_{m+1} + \cdots + ||u_n||$$

which shows that the partial sums form a Cauchy sequence in V if the series converges absolutely. Hence, if V is complete, every absolutely convergent series converges.

Conversely, suppose every absolutely convergent series in V is convergent and let (u_n) be a Cauchy sequence in V. To prove convergence of this sequence, we only have show that it has a convergent subsequence. After passing to a subsequence, we may assume that $||u_n - u_{n+1}|| < 1/2^n$ for all $n \ge 1$. If we set $v_n = u_n - u_{n+1}$, we have

$$\sum_{k=1}^{n} v_k = u_1 - u_{n+1}$$

which show that the series $\sum v_n$ converges if and only if the sequence (u_n) converges. But $\sum v_n$ is absolutely convergent since $\sum ||v_n|| < \sum 1/2^n$ and hence is convergent. QED

Two norms $|| ||_1$ and $|| ||_2$ on V are said to be equivalent if there are constants $C_1, C_2 > 0$ such that

$$||u||_1 \le C_1 ||u||_2$$
 and $||u||_2 \le C_2 ||u||_1$.

For example, if $u = (x_1, \ldots, x_n) \in \mathbb{R}^n$ (or \mathbb{C}^n), then

$$||u||_{\infty} = \max_{1 \le k \le n} k |x_k, \quad ||u||_1 = \sum_{k=1}^n |x_k|, \quad ||u||_2 = \sqrt{\sum_{k=1}^n x_n^2}$$

are equivalent norms. Equivalent norms define the same topology for V.

Exercise 3. If A is an $n \times n$ matrix over \mathbb{R} or \mathbb{C} , show that the series $\sum_{n=0}^{\infty} A^n/n!$ is absolutely convergent for the ∞ -norm on the space of $n \times n$ matrices. This matrix is denoted by $\exp(A)$ or e^A . Hint: use the fact $||AB||_1 \leq ||A||_1 ||B|_1$.

Exercise 4. If AB = BA, show that $\exp(A + B) = \exp(A)\exp(B)$. Deduce that $\exp(A)$ is invertible with inverse $\exp(-A)$.

If f is a function defined on an interval $I \subseteq \mathbb{R}$ with values in a normed space V, one can define the derivative f'(a) at a point $a \in V$ as the limit

$$\lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$$

provided this limit exists. If f, g have a derivative at a, then so does h = cf + dg and h'(a) = cf'(a) + dg'(a). If $V = \mathbb{R}^n$ and $f(t) = (f_1(t), \ldots, f_n(t))$, then $f'(a) = (f'_1(a), \ldots, f'_n(a))$. If f, g take values in the vector space of $n \times n$ matrices, and h(t) = f(t)g(t) then h'(a) = f'(a)g(a) + f(a)g'(a) so that the usual rules of calculus apply.

Mean-Value Theorem. Let f be a continuous mapping from [a, b] into a normed space V. Suppose that f'(t) exists and $||f'(t)|| \le M$ for all $t \in (a, b)$. Then $||f(b) - f(a)|| \le M(b - a)$.

Proof. Let $\epsilon > 0$ be given and let I be the set of points $x \in [a, b]$ such that

$$||f(x) - f(a)|| \le (M + \epsilon)(x - a) + \epsilon.$$

Let $c = \sup I$. Then c > a since f is continuous at a. Also, by the continuity of f we have

$$||f(c) - f(a)|| \le (M + \epsilon)(c - a) + \epsilon.$$

Suppose that c < b. Then, since $||f'(c)|| \le M$, we have $||f(c+h) - f(c)|| \le (M + \epsilon)h$ for some h > 0. But then

$$\begin{split} ||f(c+h) - f(a)|| &\leq ||f(c+h) - f(c)|| + ||f(c) - f(a)|| \\ &\leq (M+\epsilon)h + (M+\epsilon)(c-a) + \epsilon \\ &= (M+\epsilon)(c+h-a) + \epsilon \end{split}$$

which is a contradiction.

Corollary. If f is continuous on [a, b] and f'(t) = 0 on (a, b), then f = 0 on [a, b].

One can also extend the theory of Riemann integration of functions on an interval [a, b] with values in a normed space V. If $V = \mathbb{R}^n$ and $f(t) = (f_1(t), \ldots, f_n(t))$, then f is Riemann integrable if and only if each f_i is Riemann integrable and

$$\int_a^b f(t) dt = \left(\int_a^b f_1(t) dt, \dots, \int_a^b f_n(t) dt\right).$$

Moreover, $||\int_a^b f(t) dt||_1 \leq \int_a^b ||f(t)||_1 dt$. It follows that one can integrate, term by term, uniformly convergent series of continuous functions on [a, b] with values in \mathbb{R}^n .

Exercise 5. If $f(t) = \exp(tA)$, show that f'(t) = Af(t).

QED