
MATH 255: Lecture 28

Normed spaces

Let V be a real or complex vector space. A function || || on V with values in R is called a norm on
V if

(N1) For any v ∈ V , we have ||v|| ≥ 0 with equality ⇐⇒ v = 0;

(N2) For any scalar, v ∈ V , we have ||cv|| = |c|||c||;
(N3) For any u, v ∈ V , we have ||u + v|| ≤ ||u + v||.

Any norm on V defines a distance function d(u, v) = ||u− v|| so that any normed space is a metric
space. A normed vector space is said to be complete if it is complete with respect to this metric. A
complete normed space is called a Banach space.

Example 1. The set V = B(X) (respectively BC(X)), of bounded real-valued (respectively, complex-
valued) functions on a set X is a vector space under the usual operations of pointwise addition and
multiplication by scalars. If we define

||f ||∞ = sup
x∈X

|f(x)|,

then || ||∞ is a norm on V . With this norm, V is complete. If X = N, this space is denoted by `∞

(respectively `∞C ).

Example 2. If V is an inner product space with inner product < , >, then ||v|| = √
< v, v > defines

an inner product on V . If V is complete, then V is called a Hilbert space. For example, Rn and Cn are
Hilbert spaces.

Example 3. If p > 0, let V = `1 (resp. `1C) the vector space of infinite sequences u = (xn)n≥0 of real
(resp. complex) scalars xn such that the series

∑∞
n=0 |xn| is convergent. Then

||u|| =
√√√√

∞∑
n=0

|xn|

is a norm on V . To show that V is complete with this norm, let (un) be a Cauchy sequence in V with
un = (xnk)k≥0 be a Cauchy sequence. Since

|xnk − xmk| ≤
∞∑

k=0

|xnk − xmk| = ||un − um||1

we see that xk = limn→∞ xnk exists. Since

N∑

k=0

|xnk − xmk| ≤ ||un − um||,

we obtain, on passing to the limit with respect to m,

N∑

k=0

|(xnk − xk)| ≤ ||un − um||.

Passing to the limit in N , we get

∞∑

k=0

|xnk − xk| ≤ ||un − um||
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which shows that un − u ∈ V and hence that u ∈ V and, moreover, that un converges to u.

Exercise 1. Let V = `2 (resp. `2C) the vector space of infinite sequences x = (xn)n≥0 of real (resp.
complex) scalars xn such that the series

∑
n = 0∞|xn| is convergent. Show that

< x, y >=

√√√√
∞∑

n=0

|xnyn|

is an inner product on V and that V is a Hilbert space.

A series
∑∞

n=1 in a normed space is said to converge if the partial sums sn = u1 + · · ·+un converge.
The series is said to converge absolutely if the series

∑∞
n=1 ||un|| converges.

Theorem 10. A normed space V is complete if and only if every Cauchy sequence converges.

Proof. If
∑∞

n=1 un is a series in V and sn is the n-th partial sum, we have for n > m

||sn − sm|| = ||um+1 + . . . + un|| ≤ ||um+1 + · · ·+ ||un||
which shows that the partial sums form a Cauchy sequence in V if the series converges absolutely.
Hence, if V is complete, every absolutely convergent series converges.

Conversely, suppose every absolutely convergent series in V is convergent and let (un) be a Cauchy
sequence in V . To prove convergence of this sequence, we only have show that it has a convergent
subsequence. After passing to a subsequence, we may assume that ||un − un+1|| < 1/2n for all n ≥ 1.
If we set vn = un − un+1, we have

n∑

k=1

vk = u1 − un+1

which show that that the series
∑

vn converges if and only if the sequence (un) converges. But
∑

vn

is absolutely convergent since
∑ ||vn|| <

∑
1/2n and hence is convergent. QED

Two norms || ||1 and || ||2 on V are said to be equivalent if there are constants C1, C2 > 0 such that

||u||1 ≤ C1||u||2 and ||u||2 ≤ C2||u||1.
For example, if u = (x1, . . . , xn) ∈ Rn( or Cn), then

||u||∞ = max
1≤k≤n

k|xk, ||u||1 =
n∑

k=1

|xk|, ||u||2 =

√√√√
n∑

k=1

x2
n

are equivalent norms. Equivalent norms define the same topology for V .

Exercise 3. If A is an n × n matrix over R or C, show that the series
∑∞

n=0 An/n! is absolutely
convergent for the ∞-norm on the space of n × n matrices. This matrix is denoted by exp(A) or eA.
Hint: use the fact ||AB||1 ≤ ||A||1||B|1.

Exercise 4. If AB = BA, show that exp(A + B) = exp(A) exp(B). Deduce that exp(A) is invertible
with inverse exp(−A).

If f is a function defined on an interval I ⊆ R with values in a normed space V , one can define the
derivative f ′(a) at a point a ∈ V as the limit

lim
h→0

f(a + h)− f(a)
h

provided this limit exists. If f, g have a derivative at a, then so does h = cf + dg and h′(a) =
cf ′(a) + dg′(a). If V = Rn and f(t) = (f1(t), . . . , fn(t)), then f ′(a) = (f ′1(a), . . . , f ′n(a)). If f, g take
values in the vector space of n× n matrices, and h(t) = f(t)g(t) then h′(a) = f ′(a)g(a) + f(a)g′(a) so
that the usual rules of calculus apply.
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Mean-Value Theorem. Let f be a continuous mapping from [a, b] into a normed space V . Suppose
that f ′(t) exists and ||f ′(t)|| ≤ M for all t ∈ (a, b). Then ||f(b)− f(a)|| ≤ M(b− a).

Proof. Let ε > 0 be given and let I be the set of points x ∈ [a, b] such that

||f(x)− f(a)|| ≤ (M + ε)(x− a) + ε.

Let c = sup I. Then c > a since f is continuous at a. Also, by the continuity of f we have

||f(c)− f(a)|| ≤ (M + ε)(c− a) + ε.

Suppose that c < b. Then, since ||f ′(c)|| ≤ M , we have ||f(c + h)− f(c)|| ≤ (M + ε)h for some h > 0.
But then

||f(c + h)− f(a)|| ≤ ||f(c + h)− f(c)||+ ||f(c)− f(a)||
≤ (M + ε)h + (M + ε)(c− a) + ε

= (M + ε)(c + h− a) + ε

which is a contradiction. QED

Corollary. If f is continuous on [a, b] and f ′(t) = 0 on (a, b), then f = 0 on [a, b].

One can also extend the theory of Riemann integration of functions on an interval [a, b] with values
in a normed space V . If V = Rn and f(t) = (f1(t), . . . , fn(t)), then f is Riemann integrable if and only
if each fi is Riemann integrable and

∫ b

a

f(t) dt =
(∫ b

a

f1(t) dt, . . . ,

∫ b

a

fn(t) dt

)
.

Moreover, || ∫ b

a
f(t) dt||1 ≤

∫ b

a
||f(t)||1 dt. It follows that one can integrate, term by term, uniformly

convergent series of continuous functions on [a, b] with values in Rn.

Exercise 5. If f(t) = exp(tA), show that f ′(t) = Af(t).
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