
MATH 255: Lecture 27

The Topology of Metric Spaces

If (S, d) is a metric space, we let T = TS be the set of open sets of the metric space. The set T is a
collection of subsets of S that has the following properties:

(O1) If Ui ∈ T for i ∈ I, then
⋃

i∈I Ui ∈ T ;

(O2) If U, V ∈ T , then U ∩ V ∈ T ;

(O3) ∅, S ∈ T .

A collection T of subsets of a set S that satisfies these three properties is called a topology on S and the
members of T are called open sets. The pair (S, T ) is called a topological space. If (S, T ) and (S, T ′)
are topological spaces, a mapping f : S → S′ is said to be continuous if the inverse image of an open
set is open. The topological spaces are said to be isomorphic if f is bijective and both f and f−1 are
continuous. A bijective continuous mapping is also called a homeomorphism.

Exercise 1. If (S, T ) is a topological space and X is a subset of S, show that the set

TX = {X ∩ U | U ∈ T }

is a topology for X. With this induced topology, X is a called a subspace of X.

A property of metric spaces that can be described entirely in terms of open sets is said to be topological.
For example, continuity is a topological property while boundedness is not. Two metrics for a set S are
said to be equivalent if the associated topologies are the same.

Theorem 8. If d, d′ are metrics on S, then the following are equivalent:

(a) The metrics d and d′ are equivalent;

(b) The metrics D and d′ determine the same convergent sequences;

(c) (∀p ∈ S)(∀ε > 0)(∃δ > 0) such that Dδ(p) ⊆ D′
ε(p) and Dδ(p)′ ⊆ Dε(p).

The proof is left as an exercise. Two metrics d and d′ on a set S are said to be strongly equivalent
if there are constants C, C ′ > 0 such that d(x, y) ≤ Cd′(x, y) and d′(x, y) ≤ C ′d(x, y). For example, the
Euclidean metric d2 and the uniform metric d∞ are strongly equivalent since

d∞(x, y) ≤ d2(x, y) and d2(x, y) ≤ √
nd∞(x, y).

Strongly equivalent metrics are equivalent.

Exercise 2. If d is a metric, show that d′(x, y) =
d(x, y)

1 + d(x, y))
is an equivalent metric.

If (S1, d1) and (S2, d2) are metric spaces, then

d(x, y) = max(d1(x, y), d2(x, y))

is a metric on S1 × S2. The set S1 × S2 with this metric is called the Cartesian product of the metric
spaces (S1, d1) and (S2, d2). The metric d(x, y) = d1(x, y) + d2(x, y) is an equivalent metric. We have
(xn, yn) → (x, y) in S1 × S2 if and only if xn → x in S1 and yn → y in S2.

Exercise 3. If f1 → S1 and f2 → S2 are continuous, show that f → S1×S2, where f(p) = (f1(p), f2(p))
is continuous.

Exercise 4. If f, g are continuous real valued functions on a metric space S and c ∈ R, prove that the
functions f + g, fg, cf defined by (f + g)(p) = f(p) + g(p), fg(p) = f(p)g(p), (cf)(p) = c(f(p)) are
continuous.
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Another topological property is that of connectiveness. A topological space is said to be connected if
it cannot be expressed as the union of two non-empty disjoint open sets. A subset of a topological space
is said to be connected if it is connected as a subspace. The connected subsets of R are the intervals.

Theorem 9. The continuous image of a connected set is connected.

The proof is left to the reader.

Theorem 10. If (Ci)i∈I is a family of connected subsets of a space S and C is a connected subset of S
which has a non-empty intersection with each Ci then X = C ∪⋃

i∈I Ci is connected.

Proof. Suppose that X is not connected and let X = U∪V with U, V open in X, disjoint and non-empty.
Since C is connected and C = (C ∩ U) ∪ (C ∩ V ) we must have C ∩ U = ∅ or C ∩ V = ∅. Hence C ⊆ U
or C ⊆ V . Say C ⊆ U . Similarly, each Ci is a subset of U or V . But Ci ∩ C 6= ∅ implies Ci ⊆ U . Hence
X ⊆ U , which is a contradiction.
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