MATH 255: Lecture 26

Introduction to Metric Spaces: Continuity

Let (S,d), (S’,d") be metric spaces and let f : S — S’ be a function which maps S into S’. If a € S
and L € S’, then

L =lim f(z) <= (Ve>0)(30 >0) 0 <d(z,a) < = d(f(x), f(a)) <e.

r—a

Then f is said to be continuous at @ € S if L = f(a). This is equivalent to
(Ve > 0)(36 > 0) f(Ds(a)) C De(f(a)).

If we define a neighbourhood of a point p in a metric space to be any set containing a in its interior, then
f is continuous at « if and only if the inverse image of any neighbourhood of f(a) is a neighbourhood of
a. It follows that f is continuous on S if and only if the inverse image of an open set in S’ is open in S.

Exercise 1. Prove that the composition of continuous functions is continuous.

The mapping f : S — S’ is said to be open if the image of an open set is open. A continuous map
need not be open. For example f(x) = z? is a continuous mapping of R int R but f((—1,1)) = [0,1) is
not open.

Theorem 4. The continuous image of a compact set is compact.

Proof. Let f: S — S’ be continuous and let X be a compact subset of S. If (G;);cs is an open covering
of f(X) then (f~1(G;))ier is an open covering of X since X C f~1(f(X). If (f~1(G;))ics is a finite
subcovering, then (G;)e is a finite subcovering of f(X) since f(f~1(Y)) =Y. QED

Corollary. If f : S — R is continuous and X is a compact subset of S, then f has a maximum and
minimum on X.

A function f:S — S’ is said to be uniformly continuous if
(Ve > 0)(36 > 0)(Vz,y € S) d(x,y) <6 = d'(f(x), f(y)) <e.

Theorem 5. If f: S — S’ is continuous and S is compact, then f is uniformly continuous.

Proof. Let ¢ > 0 be given. For each p € S there exist §, > 0 such that f(Ds,) € D¢/ 2(f(p)).
Since S is compact, there are points pi,...,p, such that S = (J, Ds,(p;), where §; = 6,,/2. Let
0 = min(dy,...,0,). If d(x,y) < 0, then d(z,p;) < §; for some i and so

d(y,p;) < d(y,x) + d(z,p;) < 20; = 6,

so that z,y € Ds, (pi) which implies that d(f(z), f(pi)) < €/2 and d(f(z), f(pi)) < €/2. Hence
d(f(x), f(y)) <e. QED

Corollary. If f is a continuous function on R™ and X is a closed and bounded subset of R", then f is
uniformly continuous on X.

We now give some applications of this result to the theory of integration.

Theorem 6. If f is a continuous real-valued function on [a,b] X [c,d], then

d
Fa) = / f(z,y) dy
is continuous on [a,b]. If in addition, f, = % is continuous on [a,b] X [c, d], we have

d
P = [ Ly



Proof. Let ¢ > 0 be given. By the uniform continuity of f, there exists § > 0 such that

|S_t‘<6 g |f(8,y)—f(t,y)|<€/(d—
We then have
P |</ (s, — F(t )l dy < e

which yields the uniform continuity of F on [a, b].
Similarly, by the uniform continuity of f,

(36 >0) [s —t| <6 = |fals,y) = fult,y)] < e/(d—c).
Since f(z + h,y) — f(z,y) = hfs(xz + 0h,y) with 0 < 8§ < 1 we have, for |h| < J,

F(x+h)—

d d
-/ fm(x,y)dy‘é/ F(x+ Oh,y) — Fa,y)| dy < e

QED
We now extend this result to improper integrals.

Theorem 7. Suppose that f is continuous on [a,b] X [¢, 00] and that

/ f(z,y)d

is uniformly convergent for € [a,b]. Then F is continuous on [a,b]. If, in addition, f, is continuous on
[a, b] X [c, 0] and fcoo fa(z,y) dy is uniformly convergent for = € [a, b], then

"(z) = /:o fa(z,y) dy

Proof. Let e > 0 be given and choose d so that | [° f(z,y)dy| < €/3. Now choose § > 0 so that
s —t| <6 = |f(s,y) — f(t,y)|le/3(d — ¢) for all s,t € [a,b], y € [¢,d]. Then, for |s —t| < J,

| ‘</ |f(s,y) — f(t,y)|dy + 2¢/3 < e.

Similarly, if fcoo fz(z,y) dy is uniformly convergent for = € [a, b], we can choose d so that

[ flewdl <3
for all « € [a,b]. Then, by the uniform continuity of f,, we can choose § > 0 so that
s —t| <6 = |fals,y) = fa(t,y)| <€/3(d —c).
Since f(z + h,y) — f(z,y) = hf.(z + 6h,y) with 0 < § < 1 we have, for |h| < 9,

oo d
F(x+h})L_F(x) _/ f"L(x’y) dy‘ S / |f$(x+0ha y) - fL(x7y)|dy+26/3 < €.

QED

sinx

Example. By Dirichlet’s test, / dx converges. It follows, by Abel’s test, that
0




converges uniformly for y € [0,00). Hence F is continuous on [0, 00). Now, for y > 0, we have

F'(y) = —/ e "sinxdx
0

since this integral converges uniformly for y € [e,00) for any € > 0 by the Weierstrass M-test.

elementary calculus,

/a o= sin 1z do — e~ (—ysina — cosa) n 1 '
0 1+y? 1+y2

If y > 0 and we let a — oo, we get

o 1
/ e Wsinwdr = ——,
0 1+y

so that F’(y) = —1/(y? + 1) for y > 0. It follows that

dt
1+ ¢t2

=tan 'b—tan"ly

y
Fly) - Fo) = - |
for y,b > 0. Since F\(b) — 0 and tan~*b — /2 as b — oo, we get

0o .
SN s _
e” ™ der == —tan "ty
0 X 2

for y > 0. Since both sides are continuous for y > 0, the equation holds for y = 0 which gives

® sinx T
dr = —.
0 X 2

By

A sequence of functions (f,) on a set X with values in a metric space S is said to converge pointwise
to a function f on X with values in S if for all x € X we have lim f,,(z) = f(x). The sequence is said to

converge uniformly to f if
(Ve > 0)(3IN)(Vn > N)(Vz € X) d(fn(x), f(z)) <e.
Such a sequence satisfies the uniform Cauchy condition

(Ve > 0)(3N)(Vm,n > N)(Vz € X) d(fm(2), fn(x)) <€

If S is complete and (f,) satisfies the uniform Cauchy condition then (f,) converges uniformly to a

function f on X with values in S.

Exercise 2. Let (f,) be a uniformly convergent sequence of continuous functions on a metric space X

with values in a metric space S. Show that the limit function f is continuous.
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