
MATH 255: Lecture 26

Introduction to Metric Spaces: Continuity

Let (S, d), (S′, d′) be metric spaces and let f : S → S′ be a function which maps S into S′. If a ∈ S
and L ∈ S′, then

L = lim
x→a

f(x) ⇐⇒ (∀ε > 0)(∃δ > 0) 0 < d(x, a) < δ =⇒ d(f(x), f(a)) < ε.

Then f is said to be continuous at a ∈ S if L = f(a). This is equivalent to

(∀ε > 0)(∃δ > 0) f(Dδ(a)) ⊆ Dε(f(a)).

If we define a neighbourhood of a point p in a metric space to be any set containing a in its interior, then
f is continuous at a if and only if the inverse image of any neighbourhood of f(a) is a neighbourhood of
a. It follows that f is continuous on S if and only if the inverse image of an open set in S′ is open in S.

Exercise 1. Prove that the composition of continuous functions is continuous.

The mapping f : S → S′ is said to be open if the image of an open set is open. A continuous map
need not be open. For example f(x) = x2 is a continuous mapping of R int R but f((−1, 1)) = [0, 1) is
not open.

Theorem 4. The continuous image of a compact set is compact.

Proof. Let f : S → S′ be continuous and let X be a compact subset of S. If (Gi)i∈I is an open covering
of f(X) then (f−1(Gi))i∈I is an open covering of X since X ⊆ f−1(f(X). If (f−1(Gi))i∈J is a finite
subcovering, then (Gi)∈J is a finite subcovering of f(X) since f(f−1(Y )) = Y . QED

Corollary. If f : S → R is continuous and X is a compact subset of S, then f has a maximum and
minimum on X.

A function f : S → S′ is said to be uniformly continuous if

(∀ε > 0)(∃δ > 0)(∀x, y ∈ S) d(x, y) < δ =⇒ d′(f(x), f(y)) < ε.

Theorem 5. If f : S → S′ is continuous and S is compact, then f is uniformly continuous.

Proof. Let ε > 0 be given. For each p ∈ S there exist δp > 0 such that f(Dδp) ⊆ Dε/2(f(p)).
Since S is compact, there are points p1, . . . , pn such that S =

⋃n
i=1 Dδi(pi), where δi = δpi/2. Let

δ = min(δ1, . . . , δn). If d(x, y) < δ, then d(x, pi) < δi for some i and so

d(y, pi) < d(y, x) + d(x, pi) < 2δi = δpi

so that x, y ∈ Dδpi
(pi) which implies that d(f(x), f(pi)) < ε/2 and d(f(x), f(pi)) < ε/2. Hence

d(f(x), f(y)) < ε. QED

Corollary. If f is a continuous function on Rn and X is a closed and bounded subset of Rn, then f is
uniformly continuous on X.

We now give some applications of this result to the theory of integration.

Theorem 6. If f is a continuous real-valued function on [a, b]× [c, d], then

F (x) =
∫ d

c

f(x, y) dy

is continuous on [a, b]. If in addition, fx = ∂f
∂x is continuous on [a, b]× [c, d], we have

F ′(x) =
∫ d

c

∂f

∂x
(x, y) dy.
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Proof. Let ε > 0 be given. By the uniform continuity of f , there exists δ > 0 such that

|s− t| < δ =⇒ |f(s, y)− f(t, y)| < ε/(d− c).

We then have

|F (s)− F (t)| ≤
∫ d

c

|f(s, y)− f(t, y)| dy < ε

which yields the uniform continuity of F on [a, b].
Similarly, by the uniform continuity of fx,

(∃δ > 0) |s− t| < δ =⇒ |fx(s, y)− fx(t, y)| < ε/(d− c).

Since f(x + h, y)− f(x, y) = hfx(x + θh, y) with 0 < θ < 1 we have, for |h| < δ,
∣∣∣∣
F (x + h)− F (x)

h
−

∫ d

c

fx(x, y) dy

∣∣∣∣ ≤
∫ d

c

|f(x + θh, y)− f(x, y)| dy < ε.

QED

We now extend this result to improper integrals.

Theorem 7. Suppose that f is continuous on [a, b]× [c,∞] and that

F (x) =
∫ ∞

c

f(x, y) dy

is uniformly convergent for x ∈ [a, b]. Then F is continuous on [a, b]. If, in addition, fx is continuous on
[a, b]× [c,∞] and

∫∞
c

fx(x, y) dy is uniformly convergent for x ∈ [a, b], then

F ′(x) =
∫ ∞

c

fx(x, y) dy.

Proof. Let ε > 0 be given and choose d so that | ∫∞
d

f(x, y) dy| < ε/3. Now choose δ > 0 so that
|s− t| < δ =⇒ |f(s, y)− f(t, y)|ε/3(d− c) for all s, t ∈ [a, b], y ∈ [c, d]. Then, for |s− t| < δ,

|F (s)− F (t)| ≤
∫ d

c

|f(s, y)− f(t, y)| dy + 2ε/3 < ε.

Similarly, if
∫∞

c
fx(x, y) dy is uniformly convergent for x ∈ [a, b], we can choose d so that

|
∫ ∞

d

fx(x, y) dy| < ε/3

for all x ∈ [a, b]. Then, by the uniform continuity of fx, we can choose δ > 0 so that

|s− t| < δ =⇒ |fx(s, y)− fx(t, y)| < ε/3(d− c).

Since f(x + h, y)− f(x, y) = hfx(x + θh, y) with 0 < θ < 1 we have, for |h| < δ,
∣∣∣∣
F (x + h)− F (x)

h
−

∫ ∞

c

fx(x, y) dy

∣∣∣∣ ≤
∫ d

c

|fx(x + θh, y)− fx(x, y)| dy + 2ε/3 < ε.

QED

Example. By Dirichlet’s test,
∫ ∞

0

sin x

x
dx converges. It follows, by Abel’s test, that

F (y) =
∫ ∞

0

e−xy sin x

x
dx
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converges uniformly for y ∈ [0,∞). Hence F is continuous on [0,∞). Now, for y > 0, we have

F ′(y) = −
∫ ∞

0

e−xy sin x dx

since this integral converges uniformly for y ∈ [ε,∞) for any ε > 0 by the Weierstrass M-test. By
elementary calculus, ∫ a

0

e−xy sin x dx =
e−ay(−y sin a− cos a)

1 + y2
+

1
1 + y2

.

If y > 0 and we let a →∞, we get
∫ ∞

0

e−xy sin x dx =
1

1 + y2
,

so that F ′(y) = −1/(y2 + 1) for y > 0. It follows that

F (y)− F (b) = −
∫ y

b

dt

1 + t2
= tan−1 b− tan−1 y

for y, b > 0. Since F (b) → 0 and tan−1 b → π/2 as b →∞, we get
∫ ∞

0

e−xy sin x

x
dx =

π

2
− tan−1 y

for y > 0. Since both sides are continuous for y ≥ 0, the equation holds for y = 0 which gives
∫ ∞

0

sin x

x
dx =

π

2
.

A sequence of functions (fn) on a set X with values in a metric space S is said to converge pointwise
to a function f on X with values in S if for all x ∈ X we have lim fn(x) = f(x). The sequence is said to
converge uniformly to f if

(∀ε > 0)(∃N)(∀n ≥ N)(∀x ∈ X) d(fn(x), f(x)) < ε.

Such a sequence satisfies the uniform Cauchy condition

(∀ε > 0)(∃N)(∀m,n ≥ N)(∀x ∈ X) d(fm(x), fn(x)) < ε.

If S is complete and (fn) satisfies the uniform Cauchy condition then (fn) converges uniformly to a
function f on X with values in S.

Exercise 2. Let (fn) be a uniformly convergent sequence of continuous functions on a metric space X
with values in a metric space S. Show that the limit function f is continuous.
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