
MATH 255: Lecture 22

Power Series: The Binomial Series

The Taylor series for the function f(x) = (1 + x)α about x = 0 is

∞∑
n=0

α(α− 1) · · · (α− n+ 1)

n!
xn = 1 + α+

α(α− 1)

2!
x+ · · ·+ α(α− 1) · · · (α− n+ 1)

n!
xn + · · · .

This series is called the binomial series. We will determine the interval of convergence of this series
and when it represents f(x). If α is a natural number, the binomial coefficient(

α
n

)
=

α(α− 1) · · · (α− n+ 1)

n!

is zero for α > n so that the binomial series is a polynomial of degree α which, by the binomial theorem,
is equal to (1 + x)α. In what follows we assume that α is not a natural number.

If an is the n-th term of the binomial series, we have

an+1

an
=

α− n

n+ 1
x → −x as n → ∞

so that the radius of convergence of the binomial series is 1.
When x = −1, we have

an+1

an
=

n− α

n+ 1
and lim

n→∞
n

(
1− an+1

an

)
= α+ 1.

Since an has constant sign for n > α, Raabe’s test applies to give convergence for α > 0 and
divergence for α < 0.

If x = 1, the series becomes alternating for n > α. By Raabe’s test the series converges absolutely
if α > 0. If α ≤ −1 then |an+1| ≥ |an| so that the series diverges. The remaining case is −1 < α < 0.
In this case |an| > |an+1| so that we only have to show that an → 0. Setting u = 1 + α, we have

|an| =
n∏

k=1

(1− u

n
) =⇒ log |an| =

n∑
k=1

log(1− u

n
) < −u

n∑
k=1

1

k
→ −∞

which implies that an → 0.

Theorem (Binomial Theorem). The interval of convergence I of the binomial series is

[−1, 1] if α > 0, (−1, 1] if − 1 < α < 0, (−1, 1) if α ≤ −1.

The convergence at the endpoints is absolute ⇐⇒ α > 0. On I we have

(1 + x)α =

∞∑
n=0

α(α− 1) · · · (α− n+ 1)

n!
xn.

Proof. We only have to prove the last statement. By Taylor’s theorem, we have

(1 + x)α =
n−1∑
k=0

α(α− 1) · · · (α− n+ 1)

n!
xn +Rn(x),

where

Rn(x) =
1

(n− 1)!

∫ x

0

f (n)(t)(x− t)n−t dt =
1

(n− 1)!

∫ x

0

α(α− 1) · · · (α− n+1)(1+ t)α−n(x− t)n−1 dt.
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Using the first mean value theorem for integrals, we obtain

Rn(x) =
α(α− 1) · · · (α− n+ 1)

(n− 1)!
(1 + θx)α−n(x− θx)n−1

∫ x

0

dt,

where 0 < θ < 1. Simplifying, we get

Rn(x) = cn(xt)αx(1 + θx)α−1 with cn(s) =
(α− 1) · · · (α− n+ 1)

(n− 1)!
sn−1

and t = (1− θ)/(1+ θx). Then (1+ s)α−1 =
∑∞

n=1 cn(s). Now let x ∈ I. Since 0 < t < 1 if x > −1, we
have |xt| < 1 and so the series

∑∞
n=1 cn(xt) converges if x > −1. So its n-th term cn(xt) converges to

zero. If x = −1 ∈ I, we have t = 1. Since the series for (1 + x)α converges for x = −1 we have α > 0
and hence α− 1 > −1. Since the series

∑∞
n=1 cn(s) converges at s = 1 if α > −1, we have cn(−1) → 0

since |cn(−1)| = |cn(1)| → 0.
QED

Example 1. For |x| < 1 we have,

sin−1(x) =

∫ x

0

dt√
1− t2

.

By the binomial theorem, we have

(1− x2)−1/2 = 1 +
1

2
x2 +

1 · 3
2 · 4

x4 + · · ·+ 1 · 3 · · · (2n− 1)

2 · 4 · · · 2n
x2n + · · ·

for |x| < 1. Integrating, we get

sin−1(x) = x+
1

2

x3

3
+

1 · 3
2 · 4

x5

5
+ · · ·+ 1 · 3 · · · (2n− 1)

2 · 4 · · · 2n
x2n+1

2n+ 1
+ · · · .

The series converges when x = 1 by Raabe’s test since

n

(
1− an+1

an

)
=

6n2 + 5n

4n2 + 10n+ 6
→ 3

2
> 1

Since the series for x = −1 is the negative of the above series, [−1, 1] is the interval of convergence of
the power series. Since the series in continuous on its interval of convergence and sin−1(x) is continuous
there as well, we see that the power series expansion is valid on [−1, 1]. It follows that

π

2
= 1 +

1

2
· 1
3
+

1 · 3
2 · 4

· 1
5
+ · · ·+ 1 · 3 · · · (2n− 1)

2 · 4 · · · 2n
· 1

2n+ 1
+ · · · .

We leave to the reader the task of proving that the remainder after n terms is less than 2/
√
n+ 2 for

n ≥ 10. This would give an estimate of n = 4000000 to get π correct to 2 decimal places.
Since sin−1(1/2) = π/6, we also have

π

6
=

1

2
+

1

2
· 1
3

(
1

2

)2

+
1 · 3
2 · 4

· 1
5

(
1

2

)3

+ · · ·+ 1 · 3 · · · (2n− 1)

2 · 4 · · · 2n
· 1

2n+ 1

(
1

2

)2n+1

+ · · ·

which converges more rapidly than then previous series. In fact, to compute π to 2 decimal places, 3
terms suffice.

Example 2. The substitution x = sin θ reduces the improper integral

K =

∫ 1

0

dx√
(1− x2)(1− k2x2)

dx (k2 < 1)

to the integral

K =

∫ π/2

0

dθ√
1− k2 sin2 θ

dθ.
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But

(1− k2 sin2 θ)−1/2 = 1 +
1

2
k2 sin2 θ +

1 · 3
2 · 4

k4 sin4 θ + · · · 1 · 3 · · · (2n− 1)

2 · 4 · · · 2n
k2n sin2n θ + · · ·

with |k2 sin2 θ| < k2 < 1 so that we can integrate term by term to get

K = 1
π

2
+

1

2
k2

∫ π/2

0

sin2 θ dθ +
1 · 3
2 · 4

k4
∫ π/2

0

sin4 θ dθ + · · · 1 · 3 · · · (2n− 1)

2 · 4 · · · 2n
k2n

∫ π/2

0

sin2n θ dθ + · · ·

=
π

2

(
1 +

(
1

2

)2

k2 +

(
1 · 3
2 · 4

)2

k4 + · · ·
(
1 · 3 · · · (2n− 1)

2 · 4 · · · 2n

)2

k2n + · · ·
)

since ∫ π/2

0

sin2n θ dθ =
1 · 3 · · · (2n− 1)

2 · 4 · · · 2n
π

2
.
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