MATH 255: Lecture 22

Power Series: The Binomial Series

The Taylor series for the function f(z) = (1 + z)* about z =0 is
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This series is called the binomial series. We will determine the interval of convergence of this series
and when it represents f(x). If o is a natural number, the binomial coefficient
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is zero for a > n so that the binomial series is a polynomial of degree o which, by the binomial theorem,
is equal to (1 + 2)®. In what follows we assume that « is not a natural number.
If a,, is the n-th term of the binomial series, we have

Apa1 a—n
ntl — T — —xrasn — oo

an n+1
so that the radius of convergence of the binomial series is 1.
When z = —1, we have
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Since a, has constant sign for n > «a, Raabe’s test applies to give convergence for o > 0 and
divergence for a < 0.

If x = 1, the series becomes alternating for n > a. By Raabe’s test the series converges absolutely
if « > 0. If @« < —1 then |a,41| > |ayn| so that the series diverges. The remaining case is —1 < a < 0.
In this case |ay,| > |an+1] so that we only have to show that a,, — 0. Setting u = 1 + «, we have
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which implies that a,, — 0.

Theorem (Binomial Theorem). The interval of convergence I of the binomial series is
[-1,1] if >0, (-1,1] if —1<a<0, (-1,1) if a<-1.

The convergence at the endpoints is absolute <= a > 0. On I we have
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Proof. We only have to prove the last statement. By Taylor’s theorem, we have
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where
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Using the first mean value theorem for integrals, we obtain

Ry (z) =
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where 0 < § < 1. Simplifying, we get
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andt = (1—6)/(1+6z). Then (1+s)*~ 1 =37, cu(s). Nowlet z € I. Since 0 <t < lifx > —1, we
have |zt| < 1 and so the series Y, ¢, (at) converges if z > —1. So its n-th term ¢, (xt) converges to
zero. If © = —1 € I, we have t = 1. Since the series for (1 + x)® converges for x = —1 we have oo > 0
and hence v — 1 > —1. Since the series Y > | ¢,(s) converges at s = 1 if @ > —1, we have ¢,,(=1) = 0
since |c,(—=1)] = |en(1)] — 0.
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Example 1. For |z| < 1 we have,
sin~!(z) = /$ dt
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By the binomial theorem, we have
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for |z| < 1. Integrating, we get
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The series converges when z = 1 by Raabe’s test since
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Since the series for = —1 is the negative of the above series, [—1, 1] is the interval of convergence of

the power series. Since the series in continuous on its interval of convergence and sin™*(z) is continuous
there as well, we see that the power series expansion is valid on [—1,1]. It follows that
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We leave to the reader the task of proving that the remainder after n terms is less than 2/+/n + 2 for
n > 10. This would give an estimate of n = 4000000 to get 7 correct to 2 decimal places.
Since sin~*(1/2) = /6, we also have
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which converges more rapidly than then previous series. In fact, to compute 7 to 2 decimal places, 3
terms suffice.

Example 2. The substitution z = sin @ reduces the improper integral
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But
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with |k?sin? @] < k% < 1 so that we can integrate term by term to get
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