
MATH 255: Lecture 21

Power Series

A series of functions
∑∞
n=0 an(x − c)n is said to be a powers series with center x = c. Setting

s = x− c we get a power series
∑∞
n=0 ans

n with center s = 0. For this reason, we lose no generality in
assuming that the center is zero.

If |anxn0 | ≤M for some x0 6= 0, then∑
|anxn| ≤

∑
|anxn0 |

∣∣∣∣ xx0
∣∣∣∣n ≤∑Mrn

with r = |x|/|x0|. This shows that
∑∞
n=0 anx

n converges absolutely for |x| < |x0| and that there is an
R > 0, possibly =∞, such that

∑∞
n=0 anx

n converges absolutely for |x| < R and diverges for |x| > R.
This number R is called the radius of convergence of the power series

∑∞
n=0 anx

n. Thus the set of
points where the power series converges is the interval (−R,R) together with possibly one or more of
the endpoints ±R. This interval is called the interval of convergence of the power series.

Theorem. If R is the radius of convergence of the series
∑∞
n=0 anx

n, then R = 1/lim n
√
|an|.

Proof. If |x| < R, then
∑∞
n=0 |anxn| converges. Applying the n-th root test,

lim n
√
|anxn| = lim n

√
|an||x| ≤ 1

so that |x| ≤ 1/lim n
√
|an|.

If ρ = lim n
√
|an| = 0, then lim n

√
|anxn| = 0, which implies that the series

∑∞
n=0 anx

n converges for

all x and hence that R = ∞. If ρ 6= 0 and |x| > 1/ρ, then |x|ρ > 1 so that n
√
|an||x| ≥ 1 for infinitely

many n which implies that |anxn| ≥ 1 for infinitely many n and hence the divergence of
∑∞
n=0 anx

n.
QED.

Example 1. Since n
√
n! → ∞, the series

∑∞
n=0 n!xn has R = 0 while

∑∞
n=0 x

n/n! has R = ∞. The
series

∑∞
n=0 x

n has R = 1.

If an 6= 0 for n ≥ N and L = lim |an+1/an| exits (possibly =∞), then the radius of convergence of∑∞
n=0 an is 1/L.

Example 2. The series
∑∞
n=0 2nx2n is a power series

∑∞
n=1 anx

n with a2n+1 = 0, a2n = 2n. Since

lim n
√
|an| = lim 2n

√
2n =

√
2, we have R = 1/

√
2 while the ratios an+1/an cannot be computed since

an = 0 for n odd.
However, both the ratio and root test for the series

∑∞
n=0 an with an = 2n|x|2n apply to give

convergence for 2|x|2 < 1 and divergence for 2|x|2 > 1. This gives R = 1/
√

2.

Theorem. If I is the interval of convergence of
∑∞
n=0 anx

n, then the series converges uniformly on any
closed and bounded subset K of I.

Proof. If R is the radius of convergence and K ⊂ (−R,R) then there is an r < R such that x ∈ K
implies that |x| ≤ r. Then

∑
|anxn| ≤

∑
|anrn| and the result follows by the Weierstrass M-test. If

R ∈ K, we have to show that the convergence is uniform on [0, R]. Similarly, if −R ∈ K, we have to
show the convergence is uniform. The result would then follow since K could be expressed as the union
of two sets on each of which the convergence is uniform.

After a change of variable of the form s = ±x/R we may assume R = 1. We are then reduced to
proving that the series

∑∞
n=0 anx

n converges uniformly on [0, 1] if
∑∞
n=0 an converges. Let ε > 0 be given

and choose N so that |
∑∞
n=N an| < ε. Then by Abel’s test, with bn = xn, we have |

∑∞
n=N anx

n| ≤ ε.
QED

Corollary. If I is the interval of convergence of
∑∞
n=0 anx

n and f(x) =
∑∞
n=0 anx

n for x ∈ I, then f
is continuous on I and, we have, for a, b ∈ I,∫ b

a

f(x) dx =

∞∑
n=0

an
n+ 1

(bn+1 − an+1).

In particular,
∫ x
0
f(t) dt =

∑∞
n=1 an−1x

n/n = a0x+ a1x
2/2 + a2x

3/3 + · · · .
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Since limn→∞
n
√
n = 1 the radius of convergence R of the series

∑∞
n=1 an−1x

n/n is the same as that
of
∑∞
n=0 anx

n. The same is true for the series

∞∑
n=1

nanx
n−1 =

∞∑
n=0

(n+ 1)an+1x
n = a1 + 2a2x+ 3a3x

2 + · · ·

obtained by term by term differentiation from the series
∑∞
n=0 anx

n. The function

g(x) =

∞∑
n=1

nanx
n−1

is continuous for |x| < R and
∫ x
0
g(t) dt = f(x) for |x| < R. Hence f ′(x) = g(x). We thus obtain the

following result.

Theorem. If R is the radius of convergence of
∑∞
n=0 anx

n, we have, for |x| < R,

f(x) =

∞∑
n=0

anx
n =⇒ f ′(x) =

∞∑
n=1

nanx
n−1.

Corollary. If R > 0, we have f (n)(0) = n!an. In particular, if
∑∞
n=0 anx

n =
∑∞
n=0 bnx

n on some
interval (−r, r) with r > 0, then an = bn for all n.

Example 3. The series
∑∞
n=0(−1)nxn has (−1, 1) for interval of convergence and

1

1 + x
=

∞∑
n=0

(−1)nxn =⇒ log(1 + x) =

∫ x

0

dt

1 + t
=

∞∑
n=1

(−1)n−1
xn

n
= x− x2

2
+
x3

3
− x4

4
+ · · ·

if |x| < 1. Since the power series on the right has interval of convergence (−1, 1] and is a continuous
function of x there, the above series expansion for log(1 + x) is valid on (−1, 1]. In particular,

log(2) =

∞∑
n=1

(−1)n−1

n
= 1− 1

2
+

1

3
− 1

4
+ · · · .

Example 4. The series
∑∞
n=0(−1)nx2n has (−1, 1) for interval of convergence and

1

1 + x2
=

∞∑
n=0

(−1)nx2n =⇒ tan−1(x) =

∫ x

0

dt

1 + t2
=

∞∑
n=0

(−1)n
x2n+1

2n+ 1
= x− x3

3
+
x5

5
− x7

7
+ · · · .

if |x| < 1. Since the power series on the right has interval of convergence (−1, 1] and is a continuous
function of x there, the above series expansion for tan−1(x) is valid on (−1, 1]. In particular,

π

4
= 1− 1

3
+

1

5
− 1

7
+ · · · .

If f(x) is infinitely differentiable on some open interval I containing c, the series

∞∑
n=1

f (n)(c)

n!
(x− c)n

is called the Taylor series of f at c. This series will converge to f(x) if and only if the remainder term
Rn(x) in Taylor’s formula converges to zero. If this is the case on an open interval I, we say that the
Taylor series represents f on I.

Example 5. The function f defined by f(x) = e−1/x
2

if x 6= 0 and f(0) = 0 is infinitely differentiable
on R and f (n)(0) = 0 for all n. Thus the Taylor series for f(x) at 0 converges for all x but it does not
represent f on any open non-empty interval.

Example 6. If f(x) = ex, then Rn(x) = eθx/n! with 0 < θ < x. Hence 0 < Rn(x) < ex/n!→ 0 which
implies that the Taylor series for ex at x = 0, namely

∑∞
n=0 x

n/n!, represents ex

Exercise. If f(x) =
∑
n≥0 anx

n has radius of convergence 1 with an ≥ 0 for all n and
∑
n≥0 an

divergent, show that f(x)→∞ as x→ 1−. Hint: Show that f(x)/(1− x) ≥ (
∑
n≤N an)(

∑
n≥N x

n).
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