
MATH 255: Lecture 20

Tests for Non Absolute Convergence, Infinite Products

In this lecture we will give some very powerful tests for non absolute convergence. The essential
tools are telescoping series and Abel’s partial summation formula.

Theorem (Abel’s Partial Summation Formula). If sn =
∑n
k=1 ak, then for m > n

m∑
k=n+1

akbk = smbm − snbn+1 +

m−1∑
k=n+1

sk(bk − bk+1).

Proof. We use the fact that an = sn − sn−1 for n ≥ 1.

m∑
k=n+1

akbk =

m∑
k=n+1

(sk − sk−1)bk =

m∑
k=n+1

skbk −
m∑

k=n+1

sk−1bk =

m∑
k=n+1

skbk −
m−1∑
k=n

skbk+1

= smbm − snbn+1 +

m−1∑
k=n+1

sk(bk − bk+1).

Theorem (Dirichlet’s Test). If |
∑n
k=1 ak| ≤ M for all n and (bn) is a decreasing sequence which

converges to 0, then
∑∞
n=1 anbn converges, |

∑∞
n=1 anbn| ≤ Mb1 and |

∑∞
k=n+1 akbk| ≤ 2Mbn+1 for

n ≥ 1.

Proof. By Abel’s partial summation formula,

n∑
k=1

akbk = snbn +

n−1∑
k=1

sk(bk − bk+1).

The series
∑∞
n=1 anbn converges since |snbn| ≤M |bn| → 0 as n→∞ and

n−1∑
k=1

|sk(bk − bk+1)| ≤M
n−1∑
k=1

(bk − bk+1) ≤M(b1 − bn) ≤Mb1,

which implies that the series
∑∞
k=1 sk(bk−bk+1) converges absolutely. The last assertion of the theorem

follows from the fact that |
∑n+m
k=n+1 ak| ≤ 2Mbn+1 for m ≥ 1.

QED

Example 1. The series
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is of the form
∑ cn

n with
∑n
k=1 ck = 0, 1, 2 and so is convergent by Dirichlet’s test. The series is not

absolutely convergent.

Example 2. The series
∑∞
n=1

sinnx
np and

∑∞
n=1

cosnx
np are convergent for 0 < p ≤ 1 since
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implies, on summing from k = 1 to k = n,
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which show that
∑n
k=1 sinnx and

∑n
k=1 cosnx are bounded functions of n. Moreover, the convergence

of the series
∑∞
n=1

sinnx
np and

∑∞
n=1

cosnx
np is uniform on [ε, 2π − ε] for all ε > 0 since the bounds can be

chosen to be independent of x on this interval.

More generally, a series of the form a0/2 +
∑∞
n=1(an sinnx + bn cosnx) is called a Fourier series.

By the Weierstrass M-test, this series will converge absolutely and uniformly on R if
∑
an and

∑
bn

converge absolutely, in which case it defines a continuous periodic function f(x) on R of period 2π. We
leave it to the reader to show that, in this case we have

an =
1

π

∫ 2π

0

f(x) cosnx dx, bn =
1

π

∫ 2π

0

f(x) sinnx dx.

Theorem (Abel’s Test). If (bn) is a convergent monotone sequence with limit b and
∑
an is conver-

gent, then the series
∑
anbn is convergent and |

∑∞
n=1 anbn| ≤M |b1− b|, where M = |

∑n
k=1 ak|. More

generally, |
∑∞
k=n akbk| ≤ |rn||bn − b|, where rn =

∑∞
k=n ak.

Proof. By Abel’s partial summation formula,

n∑
k=1

akbk = snbn +

n−1∑
k=1

sk(bk − bk+1),

where sn =
∑n
k=1 ak. The result follows since (sn) and (bn) converge and

n−1∑
k=1

|sk(bk − bk+1)| ≤M
n−1∑
k=1

|bk − bk+1| = M |b1 − bn| →M |b1 − b|.

The last statement follows from the first applied to the series
∑∞
k=n akbk.

QED

Example 3. If
∑
an is the series in example 1, then the series

∑
an cos(1/n) is convergent since

cos(1/n) is increasing and converges to 1. The series is not absolutely convergent.

Cauchy Product of Series. The Cauchy product of the series
∑∞
n=0 an and

∑∞
n=0 bn is the series∑∞

n=0 cn, where

cn =
∑
i+j=n

aibj .

Theorem. If
∑∞
n=0 an and

∑∞
n=0 bn are absolutely convergent, their Cauchy product

∑∞
n=1 cn is

absolutely convergent and ( ∞∑
n=0

an

)( ∞∑
n=0

bn

)
=

∞∑
n=0

cn.

Proof. Let A =
∑∞
n=0 |an|, B =

∑∞
n=0 |bn|. Then∣∣∣∣n−1∑

k=0

ak

n−1∑
k=0

bk −
n−1∑
k=0

ck

∣∣∣∣ ≤ A ∞∑
k=n

|bk|+B

∞∑
k=n

|ak|

and the same is true if ak, bk, ck are replaced by |ak|, |bk|,
∑
i+j=k |ai||bj |.

Exercise 1. Using series, prove that exey = e(x+y).

Exercise 2. Show that the Cauchy product converges if both series converge and one converges
absolutely.
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Infinite Products. The exponential function exp(x) = ex is an isomorphism of the additive group of
R with with the multiplicative group R>0. It transforms the partial sums sn of a sequence (an) into a
sequence (pn) of products pn = c1c2 · · · cn, where cn = exp(an). If lim sn = s, then lim pn = p = exp(s).
The limit

p = lim
n→∞

n∏
k=1

cn =

∞∏
n=1

cn.

is called an infinite product. The factors cn are > 0 and the infinite product p > 0. The n-th factor cn
converges to 1. The Cauchy criterion for the convergence of

∑
an translates into the following Cauchy

criterion for the convergence of
∏
cn:

(∀ε > 0)(∃N)(∀m ≥ n ≥ N) |cn · · · cm − 1| < ε.

More generally, if (cn) is a sequence of non-zero real numbers, one can form the following sequence
of partial products

p0 = 1, p1 = c1, p2 = c1c2, . . . , pn = c1c2 · · · cn, . . .

If this sequence converges to a non-zero number, we denote the limit

∞∏
n=1

cn.

As in the case of an infinite series, we also use this symbol to denote the sequence of partial products
and call it an infinite product. Since pn+1/pn = cn, we see that cn → 1 if the infinite product converges.
In this case, cn > 0 for n ≥ N . Conversely, if cn > 0 for n ≥ N

∞∏
n=1

cn converges ⇐⇒
∞∑
n=N

log cn converges.

Theorem. If an > 0, then
∏∞
n=1(1 + an) converges ⇔

∑
an converges ⇔

∏∞
n=1(1− an) converges.

Proof. Since x/2 < log(1 + x) < x and x < log(1− x)−1 < 2x for 0 < x < 1/2, we see that the partial
products

∏n
k=1(1 + ak) and

∏n
k=1(1− ak)are bounded ⇔ the partial sums

∑n
k=1 ak are bounded. Since

the partial products are monotone, the result follows. QED

We say that the infinite product
∏

(1 + an) converges absolutely if
∏

(1 + |an|) converges. Since

|(1 + am) · · · (1 + an)− 1| ≤ (1 + |am|) · · · (1 + |an|)− 1,

we see that absolute convergence implies convergence by the Cauchy criterion.

Example 4. If an = (−1)n−1

√
n

, the series
∑
an converges but the infinite product

∏
(1 + an) diverges

since, for n ≥ 2

p2n+1 < (1− 1

4
) · · · (1− 1

2n
) =⇒ − log p2n−1 >

n∑
k=2

1

2k
→∞.

Exercise 3. If (pn) is the sequence of prime numbers and s > 1, show that

∞∏
n=1

1

1− psn
=

∞∑
n=1

ns

Show that the convergence is uniform for s ≥ 1 + ε for any ε > 0 and hence that the series defines a
continuous function of ζ(s) for s > 1. This function is the Riemann zeta function.
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