
MATH 255: Lecture 19

Positive Series:The Integral Test, the Kummer-Jensen Tests

A powerful test for the convergence or divergence of a positive series is the integral test. If f is a positive,
decreasing function on [1,∞) and an = f(n), we have

n∑
k=2

ak =

∫ n

1

f(x) d[x] =

∫ n

1

f(x) dx−
∫ n

1

f(x) d((x)) =

∫ n

1

f(x) dx+

∫ n

1

((x)) df(x),

where ((x)) = x− [x]. Since −f is increasing and 0 ≤ ((x)) ≤ 1, we have

0 ≤ −
∫ n

1

((x)) df(x) =

∫ n

1

((x)) d(−f(x)) ≤ f(1)− f(n).

Thus

0 ≤
∫ n

1

f(x) dx−
n∑

k=2

ak ≤ a1 − an =⇒
n∑

k=2

ak ≤
∫ n

1

f(x) dx ≤
n−1∑
k=1

ak

so that
∑∞

n=1 an converges if and only if limn→∞
∫ n

1
f(x) dx exists. More generally, if f is integrable on

[a, b] for all b ≥ a and limb→∞
∫ b

a
f(x) dx exists, we define∫ ∞

a

f(x) dx = lim
b→∞

∫ b

a

f(x) dx.

Such an integral with an infinite upper limit is an example of a convergent improper integral. The integral
is said to be divergent if the above limit does not exist.

Theorem (Integral Test). If f is positive and decreasing on [1,∞] then

∞∑
n=1

an converges ⇐⇒
∫ ∞

1

f(x) dx converges,

in which case

rn =
∞∑

k=n+1

ak ≤
∫ ∞

n

f(x) dx.

Example 1. If we apply the integral test to the p-series, we have f(x) = 1/xp. Since∫ n

1

dx

xp
=

{
log n if p = 1,
n1−p

1−p − 1
1−p if p ̸= 1,

we see that
∑

1/np converges if and only if p > 1 and that in this case rn ≤ 1/(p− 1)np−1.

Both the ratio and root tests amount to a comparison with a geometric series but are inconclusive when
the ratio or root approaches 1 from below. Using telescoping series one can obtain sharper tests. A series
of the form

∑∞
n=1(an − an+1) is called a telescoping series since

n∑
k=1

(ak − ak+1) = a1 − an+1.

Such a series converges if and only if L = lim an exists in which case the sum of the series is a1 − L.

Theorem (Kummer’s Test). If (cn) is any positive series, the strictly positive series
∑

an will converge
if

Kn = cn − cn+1
an+1

an
≥ h > 0 for n ≥ N.

Proof. Since 0 < han ≤ bn = cnan − cn+1an+1 for n ≥ N , the positive sequence (cnan) is decreasing for
n ≥ N and so is convergent. Thus the telescoping series

∑
bn is convergent and

∑
an <<

∑
bn. QED
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Theorem (Jensen’s Test). If
∑

1/cn is a positive divergent series, the strictly positive series
∑

an will
diverge if

Kn = cn − cn+1
an+1

an
≤ 0 for n ≥ N.

Proof. For n ≥ N we have cnan ≥ cNaN and so an ≥ C/cn with C = cNaN . QED

The limit form of these tests can be combined into the following theorem.

Theorem. Let (an), (cn) be strictly positive series and let Kn = cn − cn+1an+1/an. Then

(a) limKn > 0 =⇒
∑

an converges , (b) limKn < 0 =⇒
∑

an diverges with
∑ 1

cn
.

The proof is left to the reader. This theorem now yields various test by choosing different sequences (cn).

1. If cn = 1, then Kn = 1− an+1/an and we get d’Alembert’s test.

2. If cn = n− 1, then Kn = n(1− an+1/an)− 1. Hence, if we put

Rn = Kn + 1 = n(1− an+1/an), we get

Raabe’s Test: limRn > 1 =⇒
∑

an converges, limRn < 1 =⇒
∑

an diverges.

3. If cn = (n− 1) log(n− 1), then Kn = (n− 1) log n−1
n +Bn, where

Bn =

(
n

(
1− an+1

an

)
− 1

)
log n = (Rn − 1) log n.

Since (n− 1) log n−1
n → −1, we get

Bertrand’s Test. limBn > 1 =⇒
∑

an converges, limBn < 1 =⇒
∑

an diverges.

Example 2. For the series
∞∑

n=0

an =
∞∑

n=0

α(α+ 1) · · · (α+ n− 1)

n!
= 1 + α +

α(α+ 1)

2
+ · · · we have, for

α ̸= 0,
an+1

an
=

α+ n

n+ 1
and Rn = n

(
1 − α+ n

n+ 1

)
=

n(1− α)

n+ 1
→ 1 − α. Since an+1/an > 0 for n > −α,

the terms have the same sign for n ≥ N and we can apply Raabe’s Test to get convergence if 1 − α > 1
(α < 0) and divergence if 1− α < 1 (α > 0). If α = 1, then an = 1 and we have divergence.

Example 3. In the series
∞∑

n=1

2 · 4 · · · 2n
1 · 3 · · · (2n− 1)

· 1

2n+ 2
,

an+1

an
=

2n+ 2

2n+ 1
· 2n+ 2

2n+ 4
=

4n2 + 8n+ 4

4n2 + 10n+ 4
,

Rn = n

(
1− an+1

an

)
=

2n2

4n2 + 10n+ 4
→ 1

2
.

and the series diverges.

More generally, if
an+1

an
=

nk + bnk−1 + · · ·
nk + cnk−1 + · · ·

, the ratio test fails but

Rn = n

(
1− an+1

an

)
=

(c− b)nk + · · ·
nk + · · ·

→ c− b.
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By Raabe’s test, the series
∑

an converges if c− b > 1 and diverges if c− b < 1. When c− b = 1,

Bn = (Rn − 1) log n =
log n

n
· rn

k−1 + · · ·
nk−1 + · · ·

→ 0,

and the series diverges by Bertrand’s test. More generally, we have

Theorem (Gauss’ Test). If Rn = h+O(1/np) with p > 0, then
∑

an converges if h > 1 and diverges if
h < 1.

The proof is left to the reader. If (an), (bn) are positive sequences with bn > 0, then

an = O(bn) ⇐⇒ (∃M,N)(∀n ≥ N) an ≤ Mbn

an = o(bn) ⇐⇒ lim
n→∞

an
bn

= 0.
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