
MATH 255: Lecture 18

Positive Series: Comparison, Ratio and n-th Root Tests

A series
∑

an is said to be positive if an ≥ 0 for all n. Since the series
∑ |an| is a positive series any test

for the convergence of a positive series will result in a test for absolute convergence. Since the convergence
or divergence of a series is unaffected by omitting a finite number of terms, any test for positive series can
be applied to a series having only a finite number of negative terms. A positive series converges if and only
if the partial sums are bounded. This fact is the basis for the comparison test.

Theorem (Comparison Test). Suppose 0 ≤ an ≤ bn for all n. Then

(a) The convergence of
∑

bn implies the convergence of
∑

an.

(b) The divergence of
∑

an implies the divergence of
∑

bn.

If
∑

an and
∑

bn are positive series we say that the first series is dominated by the second or that the
second dominates the first if there is a C > 0 and an N such that an ≤ Cbn for n ≥ N . We denote this by

∑
an <<

∑
bn.

In this case
∑

bn converges ⇒ ∑
an converges and

∑
an diverges ⇒ ∑

bn diverges.

Example 1. Since 1
2n−1 ≤ 2n

2n−1
1
2n ≤ 2 1

2n for n ≥ 1, the series

∞∑
n=1

1
2n − 1

<<

∞∑
n=1

1
2n

and so is convergent.

Theorem (Cauchy Condensation Test). If (an) is a positive decreasing sequence, the series

∞∑
n=1

an and
∞∑

n=0

2na2n

both converge or both diverge.

Proof. Let sn =
∑n

k=1 ak and Sn =
∑n−1

k=0 2ka2k be respectively the n-th partial sums of the two series.
Then

sn ≤ s2n−1 ≤ Sn since ak ≤ a2m−1 for 2m−1 ≤ k < 2m.

Also Sn < 2s2n−1 since

2ka2k ≤ 2
2k∑

m=2k−1+1

am.

QED

Example 2 (The p-series). Applying the Cauchy Condensation Test to the p-series, we get the series

∞∑
n=0

2n

2np
=

∞∑
n=0

1
(2p)n

,

which is a geometric series with ratio r = 1/2p. Hence the p-series converges if and only if p > 1.

Example 3. Applying the Cauchy Condensation Test to
∑

1
n(log n)c , we get

∞∑
n=1

2n

nc(log 2)c
=

1
(log 2)c

∞∑
n=1

1
nc

which converges ⇔ c > 1.
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Theorem (Limit Form of Comparison Test).If
∑

an and
∑

bn are strictly positive series and the
ratio

an

bn
→ r > 0 as n →∞,

the series both converge or both diverge. If an/bn → 0 and
∑

bn converges, then
∑

an converges. If
an/bn →∞ and

∑
bn diverges, then

∑
an diverges.

Proof. Since r > 0 we can choose ε so that 0 < ε < r. Then N can be found so that, for n ≥ N ,

r − ε <
an

bn
< r + ε

which implies (r − ε)bn < an < (r + ε)bn for n ≥ N .
When an/bn → 0, we have an/bn < ε for n ≥ N and so an < εbn for n ≥ N .
When an/bn →∞, we have an/bn > M > 0 for n ≥ N and so an > Mbn for n ≥ N . QED

Corollary (Polynomial Test). If P (n) and Q(n) are monic polynomials in n of degree p and q respec-
tively, then the infinite series ∑ P (n)

Q(n)
=

∑ np + · · ·
nq + · · ·

converges ⇔ q > p + 1.

Proof. Applying the limit form of the comparison test with an = P (n)/Q(n) and bn = np/nq = 1/nq−p,
we get an/bn → 1 6= 0. Note that an > 0 for n ≥ N . QED

Theorem (Cauchy’s Root Test). Given The positive series
∑

an, if

(a) n
√

an ≤ r < 1 for n ≥ N , the series converges;

(b) n
√

an ≥ 1 for infinitely many n, the series diverges.

Proof. In case (a), we have an ≤ rn for n ≥ N with r < 1. In case (b), we have an ≥ 1 for infinitely many
n which shows that an 9 0. QED

If an = 1/np and p > 0, then n
√

an < 1 for all n and converges to 1 from below so that the root test
gives no information.

If an is a bounded sequence of real numbers, the sequence bn = supk≥n ak is a decreasing sequence
which is bounded below and so converges. The limit is called the lim sup or upper limit of the sequence
(an). It is denoted by lim supn→∞ an or lim an. Since

lim sup
n→∞

an = lim
n→∞

sup
k≥n

ak = inf
n

sup
k≥n

ak,

The upper limit of the sequence (an) is the smallest number r such that

(∀ε > 0)(∃N) an < r + ε for n ≥ N

Similarly, since cn = infk≥n ak is an increasing sequence, one can define the lower limit or lim inf of the
positive sequence (an) by

lim inf
n→∞

an = lim
n→∞

inf
k≥n

ak = sup
n

inf
k≥n

ak,

The lower limit of the sequence (an) is the largest number r such that

(∀ε > 0)(∃N) an > r − ε for n ≥ N

We have lim an = lim an if and only lim an exists.

Exercise 1. A number r is called a limit point of the sequence (an) if every interval I containing x has the
property that there are infinitely many n with an ∈ I. Show that the set of limit points of the sequence
(an) is closed and is bounded if (an) is bounded, in which case the upper and lower limits of the sequence
are respectively the largest and smallest limit points of the sequence.
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If (an) is not bounded above, we define lim an = +∞ and define lim an = −∞ if the sequence is not
bounded below. By convention, we let −∞ < a < +∞ for any a ∈ R.

Exercise 2. If (an), (bn) are positive sequences and bn > 0, show that

(a) if lim an

bn
< ∞, then

∑
bn converges =⇒ ∑

an converges;

(b) if lim an

bn
> 0, then

∑
bn diverges =⇒ ∑

an diverges.

Deduce that if 0 < lim an

bn
≤ lim an

bn
< ∞, then

∑
an converges ⇐⇒ ∑

bn converges.

Theorem (Limit form of Root Test). Let (an) be a bounded positive sequence and let r = lim n
√

an.
Then

∑
an converges if r < 1 and diverges if r > 1.

The proof is left as an exercise.

Theorem (d’Alembert’s Ratio Test.) Let
∑

an be a strictly positive series.

(a) If an+1/an ≤ r < 1 when n ≥ N , the series diverges;

(b) If an+1/an ≥ 1 when n ≥ N , the series diverges.

Proof. In case (a), we have aN+n ≤ aNrn for n ≥ 0. In case (b), we have an+1 ≥ an for n ≥ N so that
an 9 0. QED

Theorem (Limit form of Ratio Test). If an > 0 for all n, the series
∑

an converges if lim an+1/an < 1
and diverges if lim an+1/an > 1.

The proof is left as an exercise.

Example 1. Consider the series

1 + b + bc + b2c + b2c2 + · · ·+ bncn−1 + bncn + · · · ,

where 0 < b < c. Then an+1/an = b when n is odd and = c when n is even. Then lim an+1/an = b
and lim an+1/an = c and so the series converges if c < 1 and diverges if b > 1 but the ratio test gives no
information if b ≤ 1 ≤ c. However n

√
an →

√
bc so that the series converges if bc < 1 and diverges if bc > 1.

When bc = 1 the series becomes 1 + b + 1 + b + · · · which diverges.

Exercise 3. If an > 0, show that

(a) lim n
√

an ≤ lim
an+1

an
, (b) lim

an+1

an
≤ lim n

√
an.

Deduce that limn→∞ an+1/an = r ⇒ limn→∞ n
√

an = r

Exercise 4. If an = n!/nn, show that an+1/an → 1/e. Use this to show that n
√

n!/n → 1/e.

The ratio test is less powerful than the root test but is easier to use in general. When successful in
proving convergence a series

∑
an they yield estimates for an which can be used in the estimation of the

sum of the series. For the ratio test and root tests we have respectively

an ≤ aN

rN
rn and an ≤ rn

for n ≥ N and some 0 < r < 1. If s =
∑∞

n=1 an, then rn = s− sn =
∑∞

k=n+1 ak so that in the case of the
ratio test rn ≤ anr/(1− r) for n ≥ N and rn ≤ rn+1/(1− r) for n ≥ N in the case of the root test.

L’Hospital’s rule is useful in the computation of the limits involved in the use of the various convergence
tests but some simple principles can often simplify the work. If (an) and (bn) sequences and bn 6= 0 for all
n ≥ N , we say that an is asymptotic to bn as n → ∞ if the ratio an/bn converges to 1 as n → ∞. We
denote this by an ∼ bn. For example, n

√
n! ∼ n/e. If an ∼ bn then

lim
n→∞

ancn = lim
n→∞

an

bn
bncn = lim

n→∞
bncn
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so that, in computing a limit, a factor can be replaced by something asymptotic to it. If an ∼ bn then
1/an ∼ 1/bn and, if cn ∼ dn, then ancn ∼ bncn.

For example, if P (n) = anp + · · · , Q(n) = bnq + · · · are polynomials of degree p and q respectively,
then P (n) ∼ anp, Q(n) ∼ bnq and P (n)/Q(n) ∼ anp−q/b. Hence,

lim
n→

n3 − 2n2 + 3n + 1
n2 − 2n + 5

sin(1/n) = lim
n→∞

n sin(1/n) = 1.

The extended real number system. The real numbers together with two new elements, denoted by
−∞ and ∞ is called the extended real number system. We extend to it the order relation on the reals by
−∞ < r < ∞ for all real r. The operations on the reals are partially extended by

(a) r +∞ = ∞+ r = ∞, r + (−∞) = −∞+ r = −∞,
r

±∞ = 0;

(b) If r > 0, then r · ∞ = ∞ · r = ∞ r · (−∞) = −∞ · r = −∞,
r

0
= ∞;

(c) If r < 0, then r · ∞ = ∞ · r = −∞ r · (−∞) = −∞ · r = ∞,
r

0
= −∞;

(d) ∞ ·∞ = ∞, −∞ ·∞ = ∞ · (−∞) = −∞, −∞ · (−∞) = ∞.
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