
MATH 255: Lecture 16

The Elementary Transcendental Functions as Integrals

The elementary transcendental functions can also be defined as integrals. For example, the function

L(x) =
∫ x

1

dt

t

is continuously differentiable for x > 0 with L′(x) = 1/x, L(1) = 0. Moreover,

L(xy) =
∫ xy

1

dt

t
=

∫ x

1

dt

t
+

∫ xy

x

dt

t
= L(x) + L(y)

on making the change of variables s = tx in the second integral. It follows that L(mx) = mL(x) for all
m ∈ Z and hence that limx→+∞ = +∞ and limx→−∞ = −∞ since L is strictly increasing. It follows
that L has an inverse function E defined on all of R with range R>0. Moreover, E(0) = 1, E′ = E and
E(x + y) = E(x)E(y). It follows that E(x) = ex with e = E(1) and L(x) = loge x so that L(e) = 1.

As another example, consider the integral

s(x) =
∫ x

0

dt√
1− t2

.

This integral is the arc length of that part of the unit circle in the first quadrant from (0, 1) to
(x,

√
1− x2). Indeed, more generally, we have

Theorem. The length of the curve y = f(x), a ≤ x ≤ b, where f is continuously differentiable on [a, b],
is ∫ b

a

√
1 + f ′(x)2 dx.

Proof. The length L of the curve y = f(x) from x = a to x = b is defined as follows. Let P = {x0 =
a < x1 < · · · < xn = b} be a partition of [a, b], let Pi = (xi, yi), where yi = f(xi), and let

∆si = |−−−−→Pi−1Pi| = |(xi, yi)− (xi−1, yi−1)| =
√

(xi − xi−1)2 + (yi − yi−1)2

be the length of the line segment joining Pi−1 and Pi. Then

L = sup
P

n∑

k=0

∆sk = sup
P

n∑

k=0

√
1 + f ′(tk)2∆xk =

∫ b

a

√
1 + f ′(x)2 dx,

where yk − yk−1 = f ′(tk) with tk ∈ [xk−1, xk] by the Mean Value Theorem for derivatives. QED

The integral for s(x) is improper if x = 1 as 1
√

1− x2 is unbounded on [0, 1) and so not Riemann
integrable on [0, 1]. Granting the existence of the sin function, we can evaluate the integral on [0, x] for
0 ≤ x < 1 by making the substitution x = sin t. This yields s(x) = sin−1 x and so limx→1− s(x) = π/2.
That s(x) is bounded above can also be seen by making the change of variable t = 2s/(1+s2), 0 ≤ t ≤ 1.
This yields ∫ x

0

dt√
1− t2

=
∫ u

0

ds

1 + s2
,

where u = 1−√1− x2.
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If 0 ≤ x, y ≤ 1 and u = sin−1 x, v = sin−1 y with u + v ≤ π/2, the addition law for sin gives

sin(u + v) = sin u cos v + cos u sin v = x
√

1− y2 + y
√

1− x2

so that u + v = sin−1 z, where z = x
√

1− y2 + y
√

1− x2. In other words, the addition law for the sine
function translates to an addition law for the integral s(x).

∫ x

0

dt√
1− t2

+
∫ y

0

dt√
1− t2

=
∫ z

0

dt√
1− t2

,

where z = x
√

1− y2 + y
√

1− x2, provided that x, y are sufficiently small so that z < 1.

Exercise 1. Prove the addition law for the integral s(x), for x, y sufficiently small, by fixing y and
differentiating both sides with respect to x. We will see later, using power series, how to use s(x) and
its addition law to give another definition of the sine function.

The unit circle with the point (−1, 0) excluded has the rational parametrization x = 1−t2

1+t2 , y = 2t
1+t2 ,

where t is the slope of the line joining (−1, 0) and (x, y). If x = cos θ, y = sin θ, we have t = tan θ
2 .

Thus, if R(x, y) is a rational function of x, y, any identity of the form R(cos θ, sin θ)=0 can be reduced
to an identity which is a rational function of t and any integral of the form

∫
R(cos θ, sin θ) dθ

can be reduced to an integral of a rational function in t. The computation of an integral of a rational
function in t can, by the use of partial fractions and a linear change of variable, be reduced to the
computation of integrals of the form

∫
dt

t
,

∫
dt

(1 + t2)n
.

The second integral can be reduced to the computation of the integral of cos2n−2 θ using the change of
variable t = tan θ. One can use the reduction formula∫

cosn θ dθ =
1
n

(sin θ cosn−1 θ + (n− 1)
∫

cosn−2 dθ)

to compute the second integral in the form of a rational function in t plus a multiple of tan−1 t. Thus,
the only transcendental functions required to integrate rational functions are the log function and the
inverse tan function.

Exercise 2. Show that ∫ x

0

dt√
1 + t2

= sinh−1 x = log(x +
√

1 + x2),

where sinh x = (ex − e−x)/2, by making the substitution t = cosh s = (es + s−s)/2.

The arc length of the curve x = f(t), y = g(t) (a ≤ t ≤ b) is by definition

sup
P

n∑

k=0

√
(xi − xi−1)2 + (yi − yi−1)2,

where P = {t0 = a < t1 < · · · < tn = b} is a partition of [a, b] and (xi, yi) = (f(ti), g(ti)). This is by
definition the total variation of the R2-valued function α(t) = (f(t), g(t)).

Exercise 3. If the curve x = f(t), y = g(t) (a ≤ b ≤ b) is piecewise smooth, show that the arc length
of the curve is ∫ b

a

√
f ′(t)2 + g′(t)2 dt.

Use this to find the integral which gives the arc length of that part of the lemniscate x = 1√
2
t
√

1 + t2, y =
1√
2
t
√

1− t2 in the first quadrant. This integral cannot be evaluated using the elementary transcendental
functions. It is an example of an elliptic integral.

2


