
MATH 255: Lecture 14

The Elementary Transcendental Functions: The Circular Functions

The name circular functions is derived from the fact that the points (cosx, sinx) are precisely the points
on the unit circle x2+ y2 = 1. If we think of a point (a, b) in the plane as a complex number, we are led
to introduce the complex-valued function f(x) = cosx + i sinx. This function satisfies f ′(x) = if(x),
f(0) = 1, where the derivative of a complex-valued function of one variable is defined by componentwise
differentiation. We will show, without using any geometry, that there is a unique such function f(x).

The Picard existence and uniqueness theorem for differential equations holds for complex-valued
functions if the absolute value of a complex number a + ib is defined to be |a + ib| =

√
a2 + b2 and

integration is done componentwise. We thus obtain that there is a unique complex-valued function f(x)
with f ′(x) = if(x), f(0) = 1. This function is given by

f(x) = exp(ix) =
∞∑

n=0

(ix)n

n!
=

∞∑
n=0

(−1)n
x2n

(2n)!
+ i

∞∑
n=0

(−1)n
x2n+1

(2n+ 1)!
.

If we define cosx and sinx by f(x) = sinx+ i cosx and define eix = exp(ix), we obtain

eix = cosx+ i sinx = (1− x2/2! + x4/4! + · · · ) + i(x− x3/3! + x5/5! + · · · )

In particular, we obtain that sin′ = cos, cos′ = − sin, sin 0 = 0, cos 0 = 1. One can also prove that
ei(x+y) = eixeiy exactly in the same way as in the real case. This gives the addition laws for sin and
cos:

sin(x+ y) = sinx cos y + cosx sin y, cos(x+ y) = cosx cos y − sinx sin y.

We also obtain (cosx+ i sinx)n = cosnx+ i sinx, which is known as DeMoivre’s Theorem.
Since 1 = eixe−ix = cos2 x + sin2 x, we obtain that eix is a point on the unit circle. We now show

the we get all the points on the unit circle in this way. First note that cos 0 = 1 and cos 2 < 1−2 = −1.
Let π/2 be the smallest zero of cosx which is > 0. Since cosx is the derivative of sinx, we see that sinx
is a strictly increasing function on the interval [0, π/2] and that it attains a maximum of 1 at x = π/2.
Since the derivative of cosx is − sinx, we see that cosx strictly decreases from 1 to 0 on the interval
[0, π/2]. Since sin(x+ π/2) = cosx and cos(x+ π/2) = − sinx, sinx strictly decreases from 1 to 0 and
cosx strictly decreases from 0 to −1 on [π/2, π]. In particular, we obtain eiπ = −1.

Since sin(x + π) = − sinx and cos(x + π) = − cosx, we see that sinx decreases from 0 to −1 and
on the interval [π, 3π/2] and increases from −1 t0 0 on [3π/2, 2π] while cosx increases from −1 to 1 on
the interval [π, 2π]. Thus, as x increases from 0 to 2π the point eix goes through all the points of the
unit circle exactly once with the exception that eix = 1 when x = 0 and x = 2π.

Since ei(x+2π) = eix, we see that eix and hence sinx, cosx are periodic with period 2π. We thus
see that x is determined, up to an integral multiple of 2π by eix. For each non-zero complex number
z = a+ bi, there is a unique, up to the addition of an integral multiple of 2π, real number x such that
z = |z|eix. This number is called the argument of z or the angle that the vector (a, b) makes with the
positive x-axis.

One can avoid the use of the complex numbers to introduce sin and cos by noting that each of these
functions satisfies the differential equation y′′ = −y. If we set y′ = u, then u′ = −y. Conversely, if
u, y are functions with y′ = u, u′ = −y, then y′′ = −y. Thus solving y′′ = −y is equivalent to solving
y′ = u, u′ = −y for y and u.

Let Y =

[
y
u

]
. Then the system y′ = u, u′ = −y can be written in matrix form as Y ′ = AY , where

Y ′ =

[
y′

u′

]
, A =

[
0 1
−1 0

]
.
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This system of differential equations, together with the prescribing of an initial value for Y , is equivalent
to solving the integral equation

Y (x) = Y (0) +

∫ x

0

AY (t) dt,

for a continuous Y , where the integration of a vector valued function is done componentwise and
continuity is componentwise. The theorem of Picard applies in this case with the same proof, if the
absolute value of a column vector is defined by∣∣∣∣[ab

]∣∣∣∣ = max(|a|, |b|).

In context of vector spaces, the term ”norm” is used instead of absolute value. The term ”absolute
valued” is reserved for rings as the condition |xy| = |x||y| is required. We will have more to say about
this later. The Lipschitz condition is verified for F (x, Y ) = AY since |AY − AZ| = |Y − Z|. More
generally, for any 2× 2 matrix A, we have |AY − AZ| ≤ |A||X − Y | where |A| is the maximum of the
sums of the absolute values of the rows of A.

Let us carry out the Picard iteration in the case A =

[
0 1
−1 0

]
, Y (0) =

[
0
1

]
. The iterations

Yn =

[
yn
un

]
are defined by

Yn+1(x) = Y (0) +

∫ x

0

AYn(t) dt.

This is equivalent to yn+1(x) =
∫ x

0
un(t) dt, un+1(x) = 1−

∫ x

0
yn(t) dt. One shows inductively that, for

n ≥ 1,

y2n−1(x) = y2n(x) = x− x3

3!
+ · · ·+ (−1)n−1 x2n−1

(2n− 1)!

u2n(x) = u2n+1(x) = 1− x2

2!
+ · · ·+ (−1)n

x2n

(2n)!
.

It follows that the unique solution Y =

[
y
u

]
is given by

y(x) =
∞∑

n=0

(−1)n
x2n+1

(2n+ 1)!
,

∞∑
n=0

(−1)n
x2n

(2n)!

which define the sin and cosine functions respectively. To show the addition laws

sin(x+ y) = sinx cos y + cosx sin y, cos(x+ y) = cosx cos yy − sinx sin y

we fix y and simply note that

U =

[
sin(x+ y)
cos(x+ y)

]
, V =

[
sin(x+ y) = sinx cos y + cosx sin y
cos(x+ y) = cosx cos y − sinx sin y

]
are solutions of the DE Y ′ = AY and U(0) = V (0). To show that sin2 x+ cos2 x = 1, simply note that
this holds if x = 0 and that the derivative of the LHS and RHS are both zero.

Exercise 1. Show that the solution space of the system Y ′ = AY is a 2-dimensional subspace of

R2-valued functions on R. Hint: Show that the solutions U , V with U(0) =

[
1
0

]
, V (0) =

[
0
1

]
are a

basis.

Exercise 2. Show that the DE y′′ + ay′ + by = 0 is a 2-dimensional subspace of the vector space of
R-valued functions on R.

2



Exercise 3. If |A| is maximum of the sums of the absolute values of the rows of the matrix A, show
that

|cA| = |c||A|, |A+B| ≤ |A|+ |B|, |AB| ≤ |A||B|.

Exercise 4. Show that the unique solution of the Y ′ = AY , Y (0) = B is Y = eAxB, where

eAx =
∞∑

n=0

Anxn

n!
,

the convergence being componentwise. Hint: Show that the entries of the partial sums satisfy the
uniform Cauchy criterion on [−a, a] for any a > 0.
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