
MATH 255: Lecture 14

The Elementary Transcendental Functions: The Exponential and Log Functions

The elementary transcendental functions are the functions that can be obtained from the exponential
function

ax, the circular functions sinx and cosx and their associated inverse functions by means of rational
operations and composition of functions. In this lecture we will treat the exponential function.

Let a be a real number > 1. One defines ax for a natural number x = n ∈ N by induction:

a0 = 1, an+1 = ana

and extends this to all integers x ∈ Z by defining a−n = 1/an = (1/a)n. For integral x, y we have

ax+y = axay.

In the case x = 1/n with n a natural number, one defines a
1
n to be the unique solution b > 1 of the

equation bn = a. The existence of b follows from the fact that the function f(x) = xn is an increasing
continuous function which maps R onto R. For rational x = m/n ∈ Q, one defines

a
m
n = (a

1
n )m.

It is left to the reader to show the identity ax+y = axay is preserved. For an arbitrary real number x
one defines ax by

ax = sup
r∈Q, r<x

ar.

It follows that ax+y = axay for arbitrary x, y ∈ R and that axy = (ax)y. In particular,

(
1

a
)x = a−x = 1/ax.

To prove the continuity of ax, it therefore suffices to prove its right continuity at x = 0. This follows
from the fact that

lim
n→∞

a
1
n = 1.

To see this, let a1/n = 1 + hn. Then hn > 0 and 1 + nhn < a which shows that hn < (a− 1)/n which
tends to zero as n → ∞.

The function ax is strictly increasing and maps the positive reals R>0 onto the reals R. It therefore
has an inverse, loga x, the logarithm function to the base a. We have

aloga x = x, loga(a
x) = x.

To prove that that the functions ax and logxa are differentiable, we have to show that the limits

lim
h→0

ax+h − ax

n
= ax lim

h→0

ah − 1

h
and

lim
h→0

loga(x+ h)− loga x

h
=

1

x
lim
h→0

loga(1 +
h

x
)x/h

exist.

Theorem. We have limh→∞(1 + 1/h)h = e where e =
∑∞

n=0 1/n!.

Proof. Let xn = (1 + 1/n)n, let yn =
∑n

k=0 1/k! and, for m < n, let

xn,m = 1 + 1 +
1

2!
(1− 1

n
) +

1

3!
(1− 1

n
)(1− 2

n
) + · · ·+ 1

m!
(1− 1

n
)(1− 2

n
) · · · (1− m− 1

n
) ≤ xn.
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Then xn+1 > xn+1,n > xn and xn < yn < 1 +
∑n−1

k=0 1/2
k < 3. thus (xn) and (yn) are bounded

increasing sequences and hence convergent. Since xm,n ≤ xn and limn→∞ xm,n = ym, we see that
limxn = lim yn=e. If x > 0 and n = [x], we have(

1 +
1

n+ 1

)n

< (1 +
1

x
)x < (1 +

1

n
)n+1,

which shows that limx→∞(1 + 1/x)x = e since

lim
n→∞

(
1 +

1

n+ 1

)n

= lim
n→∞

(1 +
1

n
)n+1 = e.

This shows that limh→0+(1 + h)1/h = e. Since

lim
x→−∞

(1 +
1

x
)x = lim

x→∞
(1− 1

x+ 1
)−(x+1) = lim

x→∞
(1 +

1

x
)(1 +

1

x
)x = e,

we see that limh→0−(1 + h)1/h = e and hence that limh→0(1 + h)1/h = e QED

Corollary. We have
d

dx
loga x =

loga e

x
,

d

dx
ax = ax loge a.

In particular,
d

dx
loge x =

1

x
,

d

dx
ex = ex.

Since the function ex is the inverse function to loge x, we get
d

dx
ex = ex. To prove the statement

about ax, we then use the fact that ax = ex loge a. Note that this yields limh→0(a
h − 1)/h = loge a.

Note. It is customary to denote loge x by log x or lnx.

Corollary. The function y = ex is the unique solution to the initial value problem y′ = y, y(0) = 1. In
particular, ex = exp(x) =

∑∞
n=0 x

n/n!.

Corollary. The function y = eax is the unique solution to the initial value problem y′ = ay, y(0) = 1.
In particular, eax = exp(ax) =

∑∞
n=0 a

nxn/n!.
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