MATH 255: Lecture 14

The Elementary Transcendental Functions: The Exponential and Log Functions

The elementary transcendental functions are the functions that can be obtained from the exponential
function

a”®, the circular functions sin z and cos x and their associated inverse functions by means of rational
operations and composition of functions. In this lecture we will treat the exponential function.

Let a be a real number > 1. One defines a® for a natural number x = n € N by induction:

n

and extends this to all integers « € Z by defining a=" = 1/a™ = (1/a)™. For integral z,y we have

a®tY = a%aY.

In the case x = 1/n with n a natural number, one defines ar to be the unique solution b > 1 of the
equation ™ = a. The existence of b follows from the fact that the function f(z) = z™ is an increasing
continuous function which maps R onto R. For rational z = m/n € Q, one defines

m

It is left to the reader to show the identity a®*t¥ = a®a? is preserved. For an arbitrary real number z
one defines a® by

a®= sup a".

reQ, r<z

It follows that a®*¥ = a*a¥ for arbitrary x,y € R and that a*¥ = (a*)¥. In particular,

=)¥=a"*=1/d".

() /
To prove the continuity of a”, it therefore suffices to prove its right continuity at x = 0. This follows
from the fact that )

lim a» = 1.

n—oo
To see this, let a'/™ = 1+ h,,. Then h,, > 0 and 1 + nh, < a which shows that h,, < (a — 1)/n which
tends to zero as n — oo.

The function a” is strictly increasing and maps the positive reals R onto the reals R. It therefore

has an inverse, log, z, the logarithm function to the base a. We have

a®8® = gz log,(a”) = x.

To prove that that the functions a” and log), are differentiable, we have to show that the limits
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exist.
Theorem. We have lim,_,oo (1 + 1/h)" = e where e = > 07 1/nl.
Proof. Let z, = (14 1/n)", let y, = > p_, 1/k! and, for m < n, let
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Then %41 > Tpt1n > @p and 2, < yp, < 1+ Zz;é 1/2% < 3. thus (v,) and (y,) are bounded
increasing sequences and hence convergent. Since x,,, < x, and lim, o0 Tym.n = Ym, We see that
limx,, =limy,=e. If x > 0 and n = [z], we have
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which shows that lim,_,o. (1 + 1/2)* = e since

n— 00 n+1 n—00
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This shows that lim,_o4 (1 + )" = e. Since

1 1 1 1
lim (1+—)"= lim (1— ——)~ @) = lim (1+ =)(1+ =)* =
Hm (1 2)7 = lim (- 2=) Jm (14 20+ )" =e,
we see that limp, - (1 + h)'/" = e and hence that limp (1 + )Y =e QED
Corollary. We have
d o log, e d , 1o
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In particular, —log, x = —, —e® =¢€".
dx T T
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Since the function e” is the inverse function to log, x, we get d—e”” = e”. To prove the statement

x
about a®, we then use the fact that a® = e*1°8< @, Note that this yields lim,_,o(a” — 1)/h = log, a.
Note. It is customary to denote log, x by logz or Inx.

Corollary. The function y = e* is the unique solution to the initial value problem 3’ =y, y(0) = 1. In
particular, e* = exp(z) = > oo 2™ /nl.

Corollary. The function y = e®® is the unique solution to the initial value problem y’ = ay, y(0) = 1.
In particular, e* = exp(az) = >~ a"z"/nl.



