MATH 255: Lecture 13

Sequences of Functions: Uniform Convergence and Differentiation

If f,(z) = 2™ /n, the sequence (f,) converges uniformly to the function f = 0 on [0,1]. However,
fl(x) = 2" so that the sequence of derivatives (f/) converges pointwise to the function g, where
g(z) =0if x #£ 1 and g(1) = 1. Since f’ # g, this shows that one cannot, in general, interchange limits
and derivatives. Nevertheless, one has the following result:

Theorem. Let (f,) be a sequence of differentiable functions on a bounded interval I such that (f, (o))
converges for some point zo € I. If the sequence (f)) converges uniformly on I to a function g, then

(fn) converges uniformly on I to a function f which is differentiable on I and f’ = g.
Proof. Let a < b be the endpoints of I and let € > 0 be given. Choose N; so that, for m,n > Ny
€ € €

) and [fa(zo) — fu(eo)| < 5

For any = € I, apply the Mean Value Theorem for Derivatives to the interval with endpoints xg,x to
get
fin(@) = fu(@) = fim(x0) = f(@0) + (x — 20) (1 (y) — fr.(1))

for some y between xy and x. Hence

@) = Fu(a)| < (o) = Fuleo)] + (b )l fin () ~ Fa0)] < & <.

This shows that (f,,) is uniformly convergent on I. If f = lim f,,, the f is continuous on I since each
fn is continuous on 1.

To show that f is differentiable at a point ¢ € I, we apply the Mean Value Theorem for Derivatives
to fi, — fn on the interval with endpoints z,c € I with x # c. We get

(fm(2) = ful@)) = (fm(c) = fulc)) = (& — ) (fru(2) — f1(2))
with z between x and c¢. Dividing by = — ¢ and taking absolute values, we get

Jm(z) = fm(c) . fu(®) = falc)

Tr—cC r—cC

€
< [fn(e) = fa()] < 5.
Passing to the limit with respect to m, we get

f@) =) fulz) = fulo)

r—cC Tr—cC

<

Wl m

Now choose Ny so that |f; (c) —g(c)| < § for n > Ny. Let N = max(Ny, N2) and choose ¢ > 0 so that

O<l|o—c <o = ‘ff\’(x)_ffv(c)_f]/v(c”<6_
Tr—c 3
Then, combining these inequalities, we get
‘f(x) —f(C) —g(c) < e
T —c

Since € > 0 was arbitrary, this shows that f’ exists on I and equals g.



Corollary. If Y°>° | f, is a series of differentiable functions on a bounded interval I such that

o0
(a) Z fn(xo) converges for some point xg € I,

n=1

o0
(b) g = Z f} is uniformly convergent on J,

n=1
o0
then f = Z fn is uniformly convergent and f' = g.
n=1

While the uniform convergence of a sequence of continuous functions is sufficient for the limit function
to be continuous, it is not necessary. For example, if

nx ifo0<az<1/n,
folz) =q —n(zx—2/n) ifl/n<z<2/n,
0 if2/n<x<2,

the sequence (f,,) converges pointwise to the zero function on [0, 2] but the convergence is not uniform
as fn(1/n) = 1. However, for monotone sequences of continuous functions on a closed interval, uniform
convergence is necessary if the pointwise limit exists and is continuous.

Theorem. (Dini) Let (f,,) be a monotone sequence of continuous functions on a closed interval [a, b].
If (f,) converges pointwise to a continuous function f, the the convergence is uniform.

Proof. Possibly replacing (f,,) by (—f.), we can assume that f,+1(z) < f,(z). Also, after replacing
fn by fn— f, we can assume f = 0. Let € > 0 be given. For each ¢ € [a, b], there is an N(¢) > 0 such
that fy(t) < e. By continuity, there is a §(t) > 0 such that fy)(z) < € if |z —t] < (t). Now let
(P,t) be a d-fine tagged partition for the gauge § constructed above and let N = min(N(¢1),...,t,),
where t = (t1,...,t,). Then, for any = € [a,b], we have fy(x) < € since |z — tg]| < (t) for some k.
Hence f,(z) < e forn > N and all z € [a,b]. QED

Note that the the example f,,(z) = 2™ on (0, 1) shows that the result is false on an interval which
is not closed.
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