
MATH 255: Lecture 13

Sequences of Functions: Uniform Convergence and Differentiation

If fn(x) = xn/n, the sequence (fn) converges uniformly to the function f = 0 on [0, 1]. However,
f ′n(x) = xn−1 so that the sequence of derivatives (f ′n) converges pointwise to the function g, where
g(x) = 0 if x 6= 1 and g(1) = 1. Since f ′ 6= g, this shows that one cannot, in general, interchange limits
and derivatives. Nevertheless, one has the following result:

Theorem. Let (fn) be a sequence of differentiable functions on a bounded interval I such that (fn(x0))
converges for some point x0 ∈ I. If the sequence (f ′n) converges uniformly on I to a function g, then
(fn) converges uniformly on I to a function f which is differentiable on I and f ′ = g.

Proof. Let a < b be the endpoints of I and let ε > 0 be given. Choose N1 so that, for m,n ≥ N1

|f ′m(x)− f ′n(x)| < min(
ε

3
,

ε

3(b− a)
) and |fn(x0)− fm(x0)| < ε

3
.

For any x ∈ I, apply the Mean Value Theorem for Derivatives to the interval with endpoints x0, x to
get

fm(x)− fn(x) = fm(x0)− fn(x0) + (x− x0)(f ′m(y)− f ′n(y))

for some y between x0 and x. Hence

|fm(x)− fn(x)| ≤ |fm(x0)− fn(x0)|+ (b− a))|f ′m(y)− f ′n(y)| < 2ε

3
< ε.

This shows that (fn) is uniformly convergent on I. If f = lim fn, the f is continuous on I since each
fn is continuous on I.

To show that f is differentiable at a point c ∈ I, we apply the Mean Value Theorem for Derivatives
to fm − fn on the interval with endpoints x, c ∈ I with x 6= c. We get

(fm(x)− fn(x))− (fm(c)− fn(c)) = (x− c)(f ′m(z)− f ′n(z))

with z between x and c. Dividing by x− c and taking absolute values, we get
∣∣∣∣
fm(x)− fm(c)

x− c
− fn(x)− fn(c)

x− c

∣∣∣∣ ≤ |f ′m(z)− f ′n(z)| < ε

3
.

Passing to the limit with respect to m, we get
∣∣∣∣
f(x)− f(c)

x− c
− fn(x)− fn(c)

x− c

∣∣∣∣ ≤
ε

3
.

Now choose N2 so that |f ′n(c)− g(c)| < ε
3 for n ≥ N2. Let N = max(N1, N2) and choose δ > 0 so that

0 < |x− c| < δ =⇒
∣∣∣∣
fN (x)− fN (c)

x− c
− f ′N (c)| < ε

3
.

Then, combining these inequalities, we get
∣∣∣∣
f(x)− f(c)

x− c
− g(c)

∣∣∣∣ < ε.

Since ε > 0 was arbitrary, this shows that f ′ exists on I and equals g.
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Corollary. If
∑∞

n=1 fn is a series of differentiable functions on a bounded interval I such that

(a)
∞∑

n=1

fn(x0) converges for some point x0 ∈ I,

(b) g =
∞∑

n=1

f ′n is uniformly convergent on J ,

then f =
∞∑

n=1

fn is uniformly convergent and f ′ = g.

While the uniform convergence of a sequence of continuous functions is sufficient for the limit function
to be continuous, it is not necessary. For example, if

fn(x) =





nx if 0 ≤ x ≤ 1/n,

−n(x− 2/n) if 1/n ≤ x ≤ 2/n,

0 if 2/n ≤ x ≤ 2,

the sequence (fn) converges pointwise to the zero function on [0, 2] but the convergence is not uniform
as fn(1/n) = 1. However, for monotone sequences of continuous functions on a closed interval, uniform
convergence is necessary if the pointwise limit exists and is continuous.

Theorem. (Dini) Let (fn) be a monotone sequence of continuous functions on a closed interval [a, b].
If (fn) converges pointwise to a continuous function f , the the convergence is uniform.

Proof. Possibly replacing (fn) by (−fn), we can assume that fn+1(x) ≤ fn(x). Also, after replacing
fn by fn − f , we can assume f = 0. Let ε > 0 be given. For each t ∈ [a, b], there is an N(t) > 0 such
that fN(t)(t) < ε. By continuity, there is a δ(t) > 0 such that fN(t)(x) < ε if |x − t| < δ(t). Now let
(P, t) be a δ-fine tagged partition for the gauge δ constructed above and let N = min(N(t1), . . . , tn),
where t = (t1, . . . , tn). Then, for any x ∈ [a, b], we have fN (x) < ε since |x − tk| < δ(tk) for some k.
Hence fn(x) < ε for n ≥ N and all x ∈ [a, b]. QED

Note that the the example fn(x) = xn on (0, 1) shows that the result is false on an interval which
is not closed.
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