MATH 255: Lecture 12

Sequences of Functions: Uniform Convergence

The following theorem shows that, for uniformly convergent sequences of continuous functions, the limit
function is continuous.

Theorem. If (f,,) is a sequence of continuous functions on S C R and (f,) converges uniformly to f
on S, then f is continuous.
Proof. Let a € S, let € > 0 be given and choose N so that |fnx(z) — f(z)] < ¢/3 for all x € S. Now
pick § > 0 so that |z — a| < 0 implies |f,,(z) — frn(a)| < €/3. Then, for |z — a| < §, we have
|f(@) = fla)|l < |f(@) = fu(@)] + | ful(2) = fula)l + |fula) — fla)] <e.
QED
The following theorem shows that, for uniformly convergent sequences of integrable functions, one

can interchange the limit and the integral.

Theorem. Let a be of bounded variation on [a,b] and let (f,,) be a uniformly convergent sequence of
functions on [a, b] such that f,, € R(a,a,b). Define g, on [a,b] by gn(z) = [ fu(t) I f = lim f,
then

(a) fe R(aya,b);
(b) If g(x f f@®) , then g,, — ¢ uniformly on [a, b].

Proof. We can assume that « is increasing and that A = «a(b) — a(a) > 0. To prove (a), let € > 0 be
given and choose N so that, for all = € [a, b],

&)~ )l < o
Now choose a partition P of [a,b] so that

U(PafNya)_L(Pvaaa) < g

Since [U(P, f — fn,a)| < § and [L(P, f — fn,a)| < §, we have
U(Pafaa)fL(PafaO‘) gU(PvfffNaO‘)fL Pvf*fNaO‘)‘i’U(PafN,O‘)7L(P>fN70‘)

(
SU(Pf = fr,0) + L(P,f = fy,0) 4 5 = ¢

which proves (a). To prove (b), let € > 0 be given and choose N so that |f,(t) — f(¢)| < €/2A for all
n > N and all « € [a,b]. Then, for every z € [a, ], we have

g () — |</|fn — f(t)] doft) <

¢ <

- <e.

2

This proves that g, — g uniformly on [a, b]. QED

Corollary. let a be of bounded variation on [a, b] and let (f,,) be a sequence of functions f,, € R(«,a,b).
If > f,, converges uniformly to f on [a,b], then f € R(a,a,b) and

/ab(ifn)da—i/abfnda.

n=1

Let apply these results to the solution of the differential equation y' = F(x,y).



Theorem (Picard). Let F(z,y) be a continuous function on the infinite strip S = {(x,y) : [t —a| < h}
and let b € R be given. Suppose that F(x,y) satisfies the Lipschitz condition |F(z,y) — F(z,z)| <
K|y — z| on S for some K > 0. Then there exists a unique function f defined on I = [a — h, a + h] such

that f(a) =b and f'(z) = F(z, f(x)).
Proof.. We have f'(z) = F(z, f(z)), f(a) = b if and only if

fw) =+ [ "R A1) dt

We inductively define a sequence of functions (f,) on I by
fo=b fuale) =+ [ P S0 de

We have |f1(z) — fo(z)] <

(¢, )|dt' < M|z — a|, where M = sup,; |F(t,b)|. Now

al?

(@) — fu(a)] s‘ / I f () —F(tfo(t)ldt‘ <|/ " KIAW - folt)] dt]| < T

Proceeding inductively, we get | f,,(z) — fn—1(z)| < MK"fl‘z;Li‘!lln. Since

NE

fa(x) = fo(x) + ) _(fa(@) = fr-1())

k=1
we have, for m < n,
n - (Klz —a
fa(@) = fn(@)] < D7 Ife@) = fia S Z ' . = K Z
i k=m+ k=m+1

It follows that the sequence (f,,) satisfies the Cauchy Criterion for uniform convergence in virtue off the
following lemma.
:L.TL
Lemma. The series Z — converges absolutely.
n!
n=0
Proof. We can assume z > 0. If a,, = 2™ /n!, we have

Q. 1 X
ntl — —0asn— 0.
an n+1

If 0 < r <1, choose N so that a,+1 < ra, for n > N from which any, < ayr™ for n > 0. Since the
geometric series Y r™ converges for 0 < r < 1 we obtain that anN an < an ano r.

It follows that f(z) = b+ [ F(t, f(t))dt, which gives the existence of a solution to f'(z) =
F(z, f(x)), f(a) = b. To prove uniqueness, suppose fi, fo are two solutions and let g = f1 — fo.
If H is the maximum of |g| on I, we have

z)| <

C\F (@ £1(1)) — F(t (1)) dt\ < MKz —al.

Repeating this process, we find |g(z)| < M K™|z — a|™/n! for all n which shows that g = 0. QED

Corollary. There exists a unique function exp defined on R such that exp’ = exp and exp(0) = 1.

Moreover,
x
exp(z) = E g

Exercise. Show that exp(z + y) = exp(z)exp(y). Hint: Fix y and use the fact that the functions
y=f(x) =exp(z +y),y = g(x) = exp(x) exp(y) both satisfy y" =y, y(0) = exp(y).
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